设函数f(u,v)可微,z=z(x,y)由方程z=f(x-z,y)确定,则dz=

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 19:07:03
设函数f(u,v)可微,z=z(x,y)由方程z=f(x-z,y)确定,则dz=
设函数z=f(u,v)具有二阶连续偏导数,z=f(x-y,y/x),求a^2z/axay

令u=x-y,v=y/xaz/ax=az/au×au/ax+az/av×av/ax=fu-y/x^2×fva^2z/axay=a(az/ax)/ay=a(fu-y/x^2×fv)/ay=a(fu)/a

设x-az=f(y-bz),其中函数f(u)可微,验证:a(δz/δx)+b(δz/δy)=1

两边对x求导1-a*δz/δx=f'(y-bz)*(-bδz/δx)整理得:[a-bf'(y-bz)]δz/δx=-1两边对y求导-a*δz/δy=f'(y-bz)*(1-bδz/δy)整理得:[-a

设F为三元可微函数,u=u(x,y,z)是由方程F(u^2-x^2,u^2-y^2,u^2-z^2)=0确定的隐函数,求

F对各分量的偏导依次记为F1,F2,F3.方程对x求偏导得F1·(2u·∂u/∂x-2x)+F2·2u·∂u/∂x+F3·2u·∂u/

设函数z=z(x,y)是由方程F(x-z,y-z)所确定的隐函数,其中F(u,v)具有一阶连续偏导数,求z(下标x)+z

z(x)+z(y)=-(f(x)+f(y))/f(z)f(x)=f1(1-z(x)-f2z(x))f(y)=-f1z(y)+f2(1-z(y))f(z)=-f1-f2所以z(x)+z(y)=1+z(x

设函数f可微,z=f(ye^x,x/(y^2)) 求z/x,z/y

两边对x求导1-a*δz/δx=f'(y-bz)*(-bδz/δx)整理得:[a-bf'(y-bz)]δz/δx=-1两边对y求导-a*δz/δy=f'(y-bz)*(1-bδz/δy)整理得:[-a

设u=f(z),而z是由方程z=x+yg(z)确定的函数,其中f,g均为可微函数.证明du/dy=g(z)du/dx.

z=x+yg(z)=>dz/dx=1+yg'(z)dz/dx=>dz/dx=1/(1-yg'(z))dz/dy=g(z)+yg'(z)dz/dy=>dz/dy=g(z)/(1-yg'(z))du/dy

设z=z(x,y)是由方程f(x-az,y-bz)=0所定义的隐函数,其中f(u,v)可微,求对y和对x的偏导数

确定一下题目是否正确,应该求z对x的偏导数吧?f(x-az,y-bz)=0两边对x求偏导得:f₁'(1-a*dz/dx)+f₂'(-b*dz/dx)=0从中解出dz/dx即可d

设f(u,v)为二元可微函数,z=f(x^y,y^x),求x,y的偏导

令u=x^yv=y^xdz/dx=dz/du*du/dx+dz/dv*dv/dx=df/du*y*x^(y-1)+df/dv*lny*y^xdz/dy=dz/du*du/dy+dz/dv*dv/dy=

二元函数偏导数,已知方程f(y/x,z/x)=0确定了函数z=z(z,y),其f(u,v)可微,求az/ax,az/ay

【俊狼猎英】团队为您解答~题目写错了吧,应该是确定了z=z(x,y)其实很简答,先把f(y/x,z/x)=0两边求偏导就可以了,其实就是隐函数求导转化先对x求偏导,得到f'1*(-y/x^2)+f'2

大一高数f(x-z,y-z)=0,其中f(u,v)可微,则δz/δx+δz/δy是多少?

记F(x,y,z)=f(u,v)=0u=x-z,v=y-zδz/δx=-(δF/δx)/(δF/δz)=(δf/δu)/(δF/δu+δF/δv)δz/δy=-(δF/δy)/(δF/δz)=(δf/

复合函数求导法设z=xy+xF(u),而u=y/x,F(u)可导,证明x*(z对x的偏导)+y*(z对y的偏导)=z+x

(z对x的偏导)=y+F(u)+x[F'(u)(-y/x^2)](z对y的偏导)=x+F'(u)/x代入,左边=[xy+xF(u)-yF'(u)]+[xy+yF'(u)]=xy+xF(u)+xy=z+

设函数u=f(x,y,z)具有连续的一阶偏导数,其中z=z(x,y)由可微函数y=φ(x,t)及t=ψ(x,z)确定,且

第一种理解法:本题要分清各变量的关系,由题意可知,u是函数,t是中间变量,x与y是自变量.因此x与y之间无函数关系,所以∂y/∂x=0.第二种理解法:对x求偏导时另一个自变量y

设z=(x,y)是方程F(y/x,z/x)=0所确定的隐函数,其中函数F(u,v)可微分,证明

令y/x=ε,z/x=η.F(y/x,z/x)=F(ε,η)=0,记Fx,Fy,Fz分别表示对x,y,z求偏导;Fε,Fη分别表示对ε,η求偏导Fx=Fε*d(y/x)/dx+Fη*d(z/x)/dx

设函数F(u,v ,w) 的偏导数连续,由F(x-y,y-z,z-x)=0确定隐函数z=z(x,y),求此隐函数的全微分

F(x-y,y-z,z-x)=0对x求偏导数(y是常量):F1+F2(-az/ax)+F3(az/ax-1)=0F(x-y,y-z,z-x)=0对y求偏导数(x是常量):F1(-1)+F2(1-az/

设z=x+iy,解析函数f(z)的虚部为v=y3-3x2y,则f(z)的实部u可取为( )

由柯西-黎曼条件v'(x)=-u'(y),v'(y)=u'(x)得u'(y)=-6xy,u'(x)=3y²-3x²因而选择B