设函数f(x)=cos(x 3分之2π) 2cos2分之x的平方的值域
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 10:48:33
∵f(x)=cos(2x-π/3)+(sinx)^2-(cosx)^2=cos(2x-π/3)-cos2x=2sin(2x-π/6)sin(π/6)=sin(2x-π/6).∴g(x)=[sin(2x
1、f(x)=x³-3xf'(x)=3x²-3=3(x-1)(x+1)令f'(x)=0得:x=-1,或x=1x1时,f'(x)>0,函数单调增加;-10所以,当x=-1时,取极大值
(1)f(x)=cos(x+2π/3)+2cos²(x/2)=-(cosx)/2-(√3sinx)/2+1+cosx=1-[(√3sinx)/2-(cosx)/2]=1-[sin(x-π/6
1)f(x)=1+cos(2x+π/3)-(1+cos2x)/2=1/2-sin2x根号3/2最小值1/2-根号3/2最小正周期π2)c带入得sinC=根号3/2C=π/3A=π-B-C=2π/3-a
f(x)=sin²x+sin2x+3cos²x=1+2cos²x+sin2x=sin2x+cos2x周期=π再问:要过程,还有第三题的图像再答:(1)f(x)=sin
(I)∵f′(x)=3x2+2ax-a2=3(x−a3) (x+a),又a>0,当x<-a或x>a3时,f′(x)>0当−a<x<a3时,f′(x)<0∴函数f(x)的单调递增区间为(-∞,
(Ⅰ)当a=1时f(x)=x3+x2-x+m,∵f(x)有三个互不相同的零点,所以f(x)=x3+x2-x+m,即m=-x3-x2+x有三个互不相同的实数根.令g(x)=-x3-x2+x,则g′(x)
f(x)=x^3-3ax+bf'(x)=3x^2-3a,12-3a=0,a=48=8-24+b,b=24f'(x)=3x^2-12=3(x^2-4)=3(x+2)(x-2)=0,x=-2,x=2x
求导得:f′(x)=-4sinxcosx+23cos2x=-2sin2x+23cos2x=4sin(π3-2x),令f′(x)=0,得到x=π6,∵f(0)=2+a,f(π2)=a,f(π6)=3+a
f(f(f(x)))=f(f(arcsin(cos(x))))=f(arcsin(cos(arcsin(cos(x)))))=arcsin(cos(arcsin(cos(arcsin(cos(x)))
(1)、f(x)=cos2xcos4π/3+sin2xsin4π/3+cos2x+1=-1/2cos2x-根号3/2sin2x+cos2x+1=1/2cos2x-根号3/2sin2x+1=cos(2x
f′(x)=18x2+6(a+2)x+2a(1)由已知有f′(x1)=f′(x2)=0,从而x1x2=2a18=1,所以a=9;(2)由△=36(a+2)2-4×18×2a=36(a2+4)>0,所以
f(x)=(-1/3)x³+2ax²-3a²x+1该函数的定义域为R,显然在该定义域内函数连续,可导,因此:f'(x)=-x²+4ax-3a²令f'(
(1)解析:∵函数f(x)=cos(wx+f)(w>0,-π/2<f<0)的最小正周期为π∴w=2π/π=2,f(x)=cos(2x+f)∵f(π/4)=√3/2f(π/4)=cos
(Ⅰ)f'(x)=x2+(m+1)x+1,…(2分)①当△≤0,即(m-1)2-4≤0,-1≤m≤3时,函数f(x)在(-∞,+∞)内单调递增;…(4分)②当△>0,即m<-1或m>3时,令f'(x)
(1)由f(x)=x3-x2-3,得f′(x)=3x2-2x=3x(x-23),当f′(x)>0时,解得x<0或x>23;当f′(x)<0时,解得0<x<23.故函数f(x)的单调递增区间是(-∞,0
证明:f(x)=sinx-cosx+x+a求导:f'(x)=cosx+sinx+1=√2sin(x+π/4)+10
f'(x)=3x^2-2x-1=(3x+1)(x-1)f''=6x-2当f'(x)=0时有:x=-1/3或x=1当x=-1/3时f''(-1/3)0所以此点有极小值,为f(1)=-1+a
(1)f(x)=sinwxcoswx+coswxcoswx=1/2sin2wx+1/2cos2wx+1/2=√(根号)2/2sin(2wx+π/4)+1/2因为f(x)的周期为π,所以w=1f(x)=