设函数f(x)=lnx x,关于的方程有三个不同的实数解,则实数的取值范围是

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 18:36:26
设函数f(x)=lnx x,关于的方程有三个不同的实数解,则实数的取值范围是
设关于X的函数f(x)=sin(2x+a)(-π

在正弦函数的对称轴处可以取到最大值或最小值也就是2*(180/8)+a=pi/2+2kpi或3pi/4+2kpi=>a=pi/4+2kpi或pi/2+2kpi情况一:a=pi/4+2kpifx=sin

已知函数f(x)=a+lnxx(a∈R).

(Ⅰ)∵a=4,∴f(x)=lnx+4x且f(e)=5e.(1分)又∵f′(x)=(lnx+4)′x−(lnx+4)x′x2=−3−lnxx2,∴f′(e)=−3−lnee2=−4e2.(3分)∴f(

设函数f(x)=ax

存在.∵b>0,①当a>0时,定义域是包含x=-ba<0,值域是f(x)≥0,不可能相等;②当a=0时,定义域是x≥0,值域也是f(x)≥0,符合题意;③当a<0时,定义域是[0,−ba],值域是[0

已知函数f(x)=lnxx

(1)定义域为(0,+∞),∴f′(x)=1-lnxx2,令f′(x)=0,解得x=e,当f′(x)>0,解得0<x<e,当f′(x)<0,解得x>e,∴f(x)的单调递增区间为(0,e);f(x)的

设f(x)=x/[a(x+2)],若关于x的方程f(x)=x有唯一解,则函数f(x)图象的渐近线是

f(x)=x有唯一解,即方程x/[a(x+2)]=x有唯一解观察方程知,x=0必定为其解,所以要使方程有唯一解,即使方程的解只为x=0,即方程所有解都为x=0(注意这句话).x≠0时,化简得1/[a(

设函数f(x)=sinx/tanx

解题思路:此题主要考察的是三角函数的性质问题。。。。。。。。。。。。。。。。。。。。。。。解题过程:

设函数f(x)=lnx-ax

解题思路:(I)首先求出函数的导数,然后根据导数与单调区间的关系确定函数的单调区间.(Ⅱ)当a=1/2时,g(x)=x(f(x)+1)=x(lnx-1/2x+1)=xlnx+x-1/2x2,(x>1)

设函数f(x)=logaX (0

f(x^2-x)>f(2)0

设函数f(x)=exx,

(1)∵f(x)=exx∴f′(x)=−1x2ex+1xex=x−1x2ex由f'(x)=0,得x=1,因为当x<0时,f'(x)<0;当0<x<1时,f'(x)<0;当x>1时,f'(x)>0;所以

设f(x)={x分段函数

解题思路:利用图像数形结合解题解题过程:见附件同学你好,如对解答还有疑问,可在答案下方的【添加讨论】中留言,我收到后会尽快给你答复。感谢你的配合!祝你学习进步,生活愉快最终答案:略

已知函数f(x)=1−m+lnxx

函数的定义域为(0,+∞),则函数的导数为f′(x)=1x•x−(1−m+lnx)x2=m−lnxx2,由f′(x)=m−lnxx2>0,即lnx<m,即0<x<em,此时函数单调递增,由f′(x)=

设函数f(x)=x^2

解题思路:导数的计算解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/include/readq.p

已知函数f(x)=1+lnxx,(x≥1).

(I)求导函数,可得f′(x)=−lnxx2∵x≥1,∴lnx≥0,∴f′(x)≤0∴f(x)在[1,+∞)上单调递减;(II)f(x)≥kx+1恒成立,即(x+1)(1+lnx)x≥k恒成立,记g(

设函数f(x)=x

∵f′(x)=xx2+1-a,当f′(x)<0时,得a>xx2+1=1−1x2+1≥0,又∵a>0,∴a>0时,f(x)在[0,+∞)上是单调函数.

(2013•聊城二模)已知函数f(x)=1−a+lnxx在x=e上取得极值,a,t∈R,且t>0.

(Ⅰ)∵f(x)=1−a+lnxx(x>0),∴f′(x)=a−lnxx2.∵函数f(x)在x=e上取得极值,∴f′(e)=a−1e2=0,即a=1.验证可知,a=1时,函数f(x)在x=e上取得极大

(2010•宣武区二模)已知函数f(x)=lnxx.

(Ⅰ)可得f′(x)=1−lnxx2.当0<x<e时,f′(x)>0,f(x)为增函数;当e<x时,f′(x)<0,f(x)为减函数.(Ⅱ)依题意,转化为不等式a<lnx+1x对于x>0恒成立令g(x

已知函数f(x)=1+lnxx

(1)∵函数f(x)的定义域为{x|x>0},f′(x)=−lnxx2,令f′(x)=−lnxx2=0,解得x=1,当0<x<1时,f'(x)>0,f(x)单调递增;当x>1时,f'(x)<0,f(x

已知函数y=f (x)=lnxx.

(1)∵f (x)定义域为(0,+∞),∴f′(x)=1−lnxx2(2分)∵f (1e)=-e,∴切点为(1e,-e)又∵k=f′(1e)=2e2.∴函数y=f (x)

已知函数f(x)=(x+1)lnxx−1(x>0且x≠1)

(1)∵f(x)=(x+1)lnxx−1(x>0且x≠1)∴f′(x)=−2lnx+x−1x(x−1)2令g(x)=−2lnx+x−1x则g′(x)=−2x+1+1x2=(x−1x)2由g′(x)≥0

已知函数f(x)=lnxx,

(1)定义域为(0,+∞),f′(x)=1−lnxx2,令f′(x)=1−lnxx2=0,则x=e,当x变化时,f′(x),f(x)的变化情况如下表:∴f(x)的单调增区间为(0,e);单调减区间为(