设函数f(x)在x=0处连续,且limf(h^2) h^2
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 10:46:42
f(0+0)=f(0)*f(0),f(0)=0or1因为f(x)连续,所以f(x+dx)-f(x)=f(x)f(dx)-f(x)=f(x)(f(dx)-1)f(x)(f(dx)-1)趋向于f(x)(f
很高兴为您解答,liamqy为您答疑解惑如果本题有什么不明白可以追问,再问:l应为含x的函数。怎么能提到积分号外来呀?再答:是个常数,积分是常数区域,,
因为当x趋于0时,有f(0)=limf(x)=limf(x)/x*x=limf(x)/x*limx=0,于是f(0)=0,于是lim[f(x)-f(0)]/(x-0)=limf(x)/x=f'(0)存
证明f(x)在R上连续,即要证明对于任意x0,极限lim[f(x0+Δx)(Δx→0)存在且等于f(x0).因为f(x)在x=0处连续,所以limf(x)(x→0)=f(0)又因为f(x+y)=f(x
参见高等数学上册,极限存在,而且是0/0型,所以必有x趋向于0时limf(x)=0
存在,因为x趋向于0时limf(x)/x存在且x=o处连续所以f(0)=0f'(0)=lim(x->0)f(0+x)-f(0)/x=lim(x->0)f(x)/x所以存在
因为f(x)在x=0连续,因此lim(x→0)f(x)=f(0),因为lim(x→0)f(x)/x存在,即lim(x→0)[f(x)-0]/(x-0)存在,且分母极限为0,因此分子极限必为0,即lim
1=lim(x→0)F(x)所以lim(x→0)f(x)=01=lim(x→0)F(x)=lim(x→0)f(x)/x+lim(x→0)3ln(1+x)/x=lim(x→0)(f(x)-f(0))/(
由题意知:lim(x→0+)x^a*sin(1/x)=f(0)=0即x^a必须为无穷小,所以a>0.【说明】楼主这个是右连续吧,否则连续的话,左极限都不给出来?再问:为什么x^a必须无穷小?再答:因为
d【∫f(x)dx】=f(X),考的是定义.比如:f(x)=x∫f(x)dx=x^2/2+C,d【∫f(x)dx】=x=f(x)这是在考定义.再问:Ϊɶ���ǵ���f��x��dx?再答:�����
由于f(x)在x=0处连续,即lim{x->0}f(x)=f(0)所以f(0)=lim{x->0}f(x)=lim{x->0}[f(x)/x]*x=lim{x->0}[f(x)/x]*lim{x->0
lim(x-->0)f(x)=lim(x-->0)π*(sinπx)/(πx)=πlim(x-->0)(sinπx)/(πx)=π∵f(x)在x=0处连续∴lim(x-->0)f(x)=f(0)=π∴
x=0连续,所以e^0=1=0^3+a即a=1
D太简单了你只要把g(x)想成g(x)=2x就好了想法的由来:在(x→0)sinxへx
对任一x,考虑序列x,x/2,...,x/2^n,.此序列趋于0,且f(x)=f(x/2)=...=f(x/2^n)=...,因为f(x)在x=0处连续,所以f(0)=lim(n-->无穷大)f(x/
答案写得比较略,我写详细些你就容易懂了. 若有不懂请追问,如果解决问题请点下面的“选为满意答案”.
答案是3么由已知条件知道f(x)与x-2是同阶无穷小,所以f(2)是0又因为连续已知条件其实就是x=2的导数再问:是3,但是为什么f(2)是0呢?再答:f(x)与x-2是同阶无穷小
不好说.如分段函数f(x)=1/x,x≠0;f(x)=0,x=0.则lim(x→∞)f(x)=f(0),但f(x)在x=0处不连续.再如:常数函数f(x)=1,也满足题目每件,它在任一点都是连续的.
∵limx->0(sinx/x^2+f(x)/x)=limx->0[sinx+xf(x)]/x^2=limx->0[cosx+f(x)+xf'(x)]/(2x)=1/2limx->0[cosx+f(x
f(x)在x=0点连续,且f(0)=0,∴对任意的ε>0,总存在δ>0,使得当|x-0|