设函数f(x)在x=2的某领域内可导
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 19:47:49
可以这么由条件知f(x)在x0处可导.则f(x)在x0处必连续(可导必连续,连续不一定可导).设h(x)=f(x)g(x)现在先讨论h(x)在x0处的连续性:hxo+(x)=f(x0+)g(x0+);
设函数f(x)=x+√(2-x),证明:在(-∞,7/4]上f(x)是增函数,并求f(x)的最大值定义域:由2-x≧0,得x≦2令f′(x)=1-1/[2√(2-x)]=1-[√(2-x)]/[2(2
以前学的数学知识有点忘了..下面给出一个证明,不一定正确,但是如果前提成立的话,应该是正确的.这个假设前提是:f(x)是一般的一元n次多项式,一元是显然的,n次这里指的是多项式的次数是有限的整数.证明
A偏导数存在,函数不一定在该点可微.多元函数可微的条件是在这点的偏导数存在且连续B.曲面f(x,y)-z=0,分别对x,y,z求导,得fx,fy,-1,所以曲面在(0,0,f(0,0))的法线方程是x
首先要说明:不是求“在x→0时的极限值”,而是求“在h→0时的极限值”因为设f(x)在点a的某领域内具有二阶连续导数,所以:lim(h→0){[f(a+h)+f(a-h)-2f(a)]/h^2}.是(
因为:limx→0(sin3xx3+f(x)x2)=limx→0sin3x+xf(x)x3=limx→0sin3xx+f(x)x2=0,所以:limx→0(sin3xx+f(x))=0.又:f(x)在
函数y=f(x)在点Xo的某一领域内有定义,就是当x=Xo时,函数y=f(x)具有确定的值.亦即在x=Xo时,函数y=f(x)有意义.
你要对领域的概念理解!数学分析里一维空间中的领域其实就是数轴上的一个开区间,二维就是一个圆形,三维就是一个球体了!
选D偏导数y看作常数...
无法证明f(x)是周期函数,但是可以说明f(x)关于x=1对称
令x=1/t,则由题意:f(1/t)=2f(t)*(√(1/t))-1即f(1/x)=2f(x)*(√(1/x))-1(注意这里自变量是x还是t无所谓,只是为了区别一下,所以用了不同的字母)把f(1/
x>0时,f(x)=2x²-x,x
首先判断连续性.容易得出连续.再判断可导,用定义.Lim(x趋于零)f(x)-f(0)/x-0将各表达式带入,利用洛必达法则,得到为零.判断连续性部分省略.判断可导性:lim(x->0)f(x)-f(
你的质疑是正确的.只从定义域来考虑的话题目就有问题了.
E(X)=2随机变量X的分布函数F(x)在x
二阶为零,三阶不为零,则X0两侧二阶导数变号,为拐点…而且一阶为零,也可以得到零是一阶导数的极值,两侧符号不变,函数单调性也保持不变,不是函数极值点
f'(x)=e^f(x)①当x=2时,f(x)=1,那么f'(2)=e^f(2)=e①式两边同时对x进行求导,得:f''(x)=e^f(x)*f'(x)=e^f(x)*e^f(x)=e^[2f(x)]
解题思路:导数的计算解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/include/readq.p
考虑函数f(x)=|x|+xsin1/x,其中f(0)=0,则0是f(x)的最小值点,也是极小值点,但f'(x)=1+sin1/x-1/xcos1/x,f'(1/npi)=1+(-1)^{n+1}np
画出y=x^2-4x-5的图象,然后将x轴下方的部分翻折到x轴上方去即可.取[-2,6]的部分,像个字母“W”的形状在图上画一条y=5的直线,观察知,f(x)≥5有三段解集,中间一段是[0,4]两边的