设函数f(x)在[0,1]上连续,在(0,1)上可微
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 18:45:21
f(x)为奇函数,所以f(-x)=-f(x)[f(x)-f(-x)]/x=2f(x)/x若其小于0则f(x)和x符号相反f(x)在(0,正无穷大)为增函数,且f(1)=0,则(1,正无穷大)是,f(x
1、x=y=1,xy=1f(1)=f(1)+f(1)f(1)=02、f(x)+f(x+2)=f[x(x+2)]=f(x²+2x)2=f(1/3)+f(1/3)=f(1/3*1/3)=f(1/
由于f(x)是奇函数,所以f(-x)=-f(x)所以不等式化为f(x)+f(x)/x
作变量替换t=π-x,代入可得原式=∫(π-t)f(sinx)d(-t)(积分限是从π到0),化简一下得∫(从π到0)t*f(sint)dt+π∫(从0到π)f(sint)dt,第一项与原式相差一下负
(1)令x1=0,x2=1,f(1/2)=a令x1=1,x2=0,f(1/2)=1-aa=1/2(2)f((x1+x2)/2)=1/2(f(x1)+f(x2)).f(1/7)=1/2(f(0)+f(2
很高兴为您解答,liamqy为您答疑解惑如果本题有什么不明白可以追问,再问:l应为含x的函数。怎么能提到积分号外来呀?再答:是个常数,积分是常数区域,,
令g(x)=2x-∫(0,x)f(t)dt-1则g'(x)=2-f(x)>0所以g(x)单调增,最多只有一个实根又g(0)=-10所以在(0,1)有唯一实根.再问:f(t)dt-1=1-∫(0,1)f
f'(x)=1/x所以f(x)=lnx+cf(1)=0c=0f(x)=lnxg(x)=lnx+1/x(x>0)g(1/x)=x-lnx(x>0)g(x)-g(1/x)=2lnx+1/x-x另F(x)=
证明:假设存在x0>0,使|g(x)-g(x0)|<1/x成立,即对任意x>0,有Inx<g(x0)<Inx+2/x,(*)但对上述x0,取x1=eg(x0)时,有Inx1=g(x0),这与(*)左边
由“函数f(x)在R上是偶函数,在区间(-∞,0)上递增”得出对称轴为x=0,且在区间(0,+∞)上递减.又“f(a+1)/-2a+3/解不等式得2/3
奇函数f(-x)=-f(x)所以2f(x)/x0是增函数则xf(-1)所以-1
你把要证明的问题写详细些,那个符号乱码了.再问:用a代替的话af'(a)+(2-a)f(a)=00
sin(π-t)=sintx=π-tdx=-dtx=0t=πx=πt=0∫(0~π)xf(sinx)dx=-∫(π~0)[π-t]f(sint)dt=∫(0~π)(π-t)f(sint)dt=∫(0~
设g(x)=f(x)-x因为0
设lim[x→0]f(x)=a.对ε=1,存在1>δ>0,当x∈(0,δ)时,|f(x)-a|
f‘(x)=2f(x),df(x)/f(x)=2dx解得:f(x)=Ce^(2x)由f(0)=1得:C=1f(x)=e^(2x)
暂时弄出了前两个问,不知道对不对.(1)因为f‘(x)=1/x所以f(x)=lnx+c又因为f(1)=ln1+c=0所以c=0所以g(x)=lnx+1/x令g’(x)=1/x-1/(x的平方)=0得x
答案写得比较略,我写详细些你就容易懂了. 若有不懂请追问,如果解决问题请点下面的“选为满意答案”.
(1)由已知,令x=y=13,则f(19)=f(13)+f(13)=2.(2)∵f(x)+f(2-x)=f[x(2-x)]<2=f(19),又由函数f(x)是定义在(0,+∞)上的减函数:得x>02−
直接用定义做估计即可.对任意的e>0,存在d>0,当0