设函数f(x)在[a,b]上具有连续一阶导数,max|f(x)|=M

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 19:08:06
设函数f(x)在[a,b]上具有连续一阶导数,max|f(x)|=M
设函数f(x)和g(x)在区间[a,b]上的导数满足f'(x)>g'(x),则在(a,b)上一定有

令h(x)=f(x)-g(x)则h'(x)=f'(x)-g'(x)>0故h(x)在[a,b]上单调递增故对任意x∈[a,b]又h(x)>h(a)即f(x)-g(x)>f(a)-g(a)即f(x)+g(

设函数f(x)在区间[a,b]上连续,证明:∫f(x)dx=f(a+b-x)dx

证明:做变量替换a+b-x=t,则dx=-dt,当x=b,t=a,当x=a,t=b于是∫(a,b)f(a+b-x)dx=-∫(b,a)f(t)dt=∫(a,b)f(t)dt=∫(a,b)f(x)dx即

设函数f(x)在[a,b]上连续,在(a,b)内可导且f'(x)

F'(x)=【f(x)(x-a)-∫(a,x)f(t)dt】/(x-a)^2=【f(x)(x-a)-f(t0)(x-a)】/(x-a)^2=【f(x)-f(t0)】/(x-a)

设函数f(x)在(a,b)内连续,则必有().

CA.比如f(x)=tan(x)在(-pi/2,pi/2)内连续,但是f(x)无界B.同上,f(x)=tan(x)无最大值,也无最小值D.如果是分段函数,该条不成立,比如函数f(x)=100,x=1;

设函数f(x)在[a,b]上连续,在(a,b)内可导(0

令g(x)=x^2在[a,b]上连续,在(a,b)内可导则柯西中值定理:(f(b)-f(a))/(g(b)-g(a))=f'(ξ)/g'(ξ)所以2ξ[f(b)-f(a)]=(b^2-a^2)f'(ξ

设函数f(x)在[a,b]上连续,在(a,b)内有二阶导数,且有f(a)=f(b)=0,f(c)>0(a

使用3次拉格朗日定理即可详细过程请见下图

设函数f(x)在闭区间[a,b]上连续,a

证:(1)当f(x1)=f(x2)时,显然当ξ=x1或x2时f(ξ)=[f(x1)+f(x2)]/2满足题意(2)当f(x1)不等于f(x2)时,不妨设f(x2)>f(x1),则f(x1)<[f(x1

设函数f(x)在[a,b]上有连续导数,且f(c)=0,a

利用分部积分∫上a下cF(x)f'(x)dx=F(a)f(a)-F(c)f(c)-∫上a下cf^2dx又因为F(a)=f(c)=0,即得

设函数f(x)在[a,b]上连续,在(a,b)可导,且f(a)*f(b)>0,f(a)*f((a+b)/2)

设F(x)=e^(-kx)f(x)由f(a)*f(b)>0,f(a)*f((a+b)/2)0F(a)*F((a+b)/2)0F(b)>0F((a+b)/2)再问:我想问一下,F(x)=e^(-kx)f

设函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,

设g(x)=f(x)/(e^x),则g(x)在[a,b]上满足罗尔定理条件.g′(x)=[f′(x)-f(x)]/e^x所以(a,b)内至少存在一点c,使得g′(c)=0,即有f'(c)-f(c)=0

设函数f ( x)在有限区间( a,b)内可导,

由题目的条件,f(x)实际上就是[a,b]上的连续函数,也就是说,题目的条件保证了Rolle定理的条件是满足的.更准确的说法:这个命题实际上就是Rolle定理,不能称为Rolle定理的推广.它与Rol

【中值定理证明题】设函数f(x)在[a,b]上连续,在(a,b)上可导,且f(a)f(b)>0,f(a)f((a+b)/

由f(a)f((a+b)/2)0,同理可知((a+b)/2,b)上存在x2,使得f(x2)=0,构造函数G(x)=f(x)/e^kx,G(x1)=G(x2)=0,G(x)在[x1,x2]可导且连续,在

设函数f(x)在[a,b)上单调增加,且存在极限limf(x)=A,证明f(x)在[a,b)上有界

如果没猜错的话,题目该是:…且当x→b时,limf(x)=A,…那么因为f(x)在[a,b)单调增加,所以f(x)≥f(a),且因为当x→b时,f(x)极限为A,所以f(x)

设函数f 在[a,b]上连续,M=max|f(x)|(a

设|f(c)|=max|f(x)|.首先有|f(x)^n|0,当x满足|x-c|=[积分(从c-d到c+d)|f(x)^n|dx]^(1/n)>=[积分(从c-d到c+d)(M-e)^ndx]^(1/

设函数f(x)在区间[a,b]上连续,在区间(a,b)内有二阶导数,如果f(a)=f(b)且存在c

这个很显然分别在(a,c)和(c,b)上用Rolle定理得存在x1,x2满足a再问:谢谢。能再具体些吗再答:够具体了,再搞不懂就把Rolle定理的式子自己写一下,不要太偷懒再问:谢谢我能在问你一个问题

设f(x)在[a,b]上连续,a

证明:令k=[pf(c)+qf(d)]/(p+q)无妨设f(c)≤f(d),由于q是正数,所以qf(c)≤qf(d)pf(c)+qf(c)≤pf(c)+qf(d)(p+q)f(c)≤pf(c)+qf(

设f(x)在[a,b]内可导,f(x)有界,那么f(x)的导函数在[a,b]上是否也是有界的?

不一定,例如:根号x在区间[0,10]内是有界的,但在0点的导数是无穷大

设非线性函数f(x)在[a,b]上满足拉格朗日定理证明一个不等式

你是南开的吗?再问:这个不重要。。。