设函数f(x)在区间[0,2]上连续,且f(0)=f(2)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 18:58:15
∫[0,a][f(x)+f(2a-x)]dx=∫[0,a]f(x)dx+∫[0,a]f(2a-x)dx令t=2a-x,x=2a-t,dx=-dt,x=0时,t=2a,x-a时,t=a因此上式变为=∫[
单调性只有在一段连续区间上才恒有意义(也存在特殊情况,分段函数中有可能在两段三段区间中恒有意义,但总之是在区间上才有意义),所以说一个点是不存在单调性的,-6到-2开区间和闭区间对连续函数的单调性来说
因为是奇函数,所以函数单调性不变,在R上为减函数,所以只要括号左边的值大于右边的值就行了求出来x>3或者x
做辅助函数F(x)=x²f(x),则函数F(x)在区间[0,1]上连续,在(0,1)内可导,且F'(x)=2xf(x)+x²f'(x).F(0)=0,F(1)=f(1)=0,于是由
设x1>x2>0,x1-x2>0f(x1)-f(x2)=[√(x1^2+1)-ax1]-[√(x2^2+1)-ax2]=[√(x1^2+1)-√(x2^2+1)]-a(x1-x2)其中√(x1^2+1
证明:f(x)=√(x^2+1)-ax(这应该是原式的正确书写)则其导函数f'(x)=x/√(x^2+1)-a=[x-a√(x^2+1)]/√(x^2+1)因为,在区间[0,+&)上,f'(x)的分母
设F(x)=f(x+a)-f(x),则F(x)在[0a]上连续所以F(a)F(0)=[f(2a)-f(a)][f(a)-f(0)],又f(2a)=f(0)所以F(a)F(0)=[f(0)-f(a)][
证明:f(x)=(1+x²)/(1-x²)=(x²-1+2)/(1-x²)=-1+2/(1-x²)在(-1,0)上任取x1,x2,设x1
:(Ⅰ)由于f(2-x)=f(2+x),f(7-x)=f(7+x)可知f(x)的对称轴为x=2和x=7,即f(x)不是奇函数.联立f(2-x)=f(2+x)f(7-x)=f(7+x)推得f(4-x)=
1.f(x)=(x+2)/(x+1)=1+1/(x+1)因为1/(1+x)在(-∞,-1),(-1,+∞)两个区间上是递减函数所以f(x)在(-∞,-1),(-1,+∞)两个区间上是减函数2.设x1
f(x)在区间[-6,-2]上递减,在区间[-2,11]上递增,那最值点就是f(-2)啊再问:为什么啊?亲,,我要详解再答:亲,你画个图就可以了。先递减再递增肯定在-2处取得最小值
题目错了吧 应该是证明,2f(a)+af'(a)=f'(a) 如下图: 再问:我书上写的是等于0啊再答:不好意思啊,想成另一题了,重新构造一个函数即可,方
由题目的条件,f(x)实际上就是[a,b]上的连续函数,也就是说,题目的条件保证了Rolle定理的条件是满足的.更准确的说法:这个命题实际上就是Rolle定理,不能称为Rolle定理的推广.它与Rol
(1)证明:任取0≤x1-x2≥-2,∵f(x)在区间[-2,0]上单调递增函数,∴f(-x1)>f(-x2),又f(x)为偶函数,∴得-f(x1)>-f(x2),即f(x1)
画出y=x^2-4x-5的图象,然后将x轴下方的部分翻折到x轴上方去即可.取[-2,6]的部分,像个字母“W”的形状在图上画一条y=5的直线,观察知,f(x)≥5有三段解集,中间一段是[0,4]两边的
记a=∫_0^2f(x)dx,则a为一个定值f(x)=x^2-a所以∫_0^2f(x)dx=∫_0^2(x^2-a)dx=(0~2)[x^3/3-ax]=8/3-2a因此有a=8/3-2a解得a=8/
有零点,对称轴为x=(a+c)/3a,因为a>c>0所以对称轴大于0小于1,即在0和1之间将0和1分别代入可得f(x)都>0,再将对称轴x=(a+c)/3a代入可得f(x)=(ac-a^2-c^2)/
当x≥x0吧f(x)-f(x0)=f'(ζ1)(x-x0)其中ζ1∈(x0,x)f''(x)≥0可知f'(x)递增,即f'(ζ)≥f'(x0)即f(x)≥f(x0)+f'(x0)(x-x0)当x
-2,2都在(-3,4)区间内,根据f(x)为减函数,所以f(2)