设函数fx=想,其中x为不超过实数x的最大整数,则称fx为高斯函数
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 22:02:49
设函数fx=sin(φ-2x)(0
同学,你的问题中的“密度函数”应该是“分布函数”吧,要好好看书哦!公式书上也有的.第一步:求出变量x的密度函数,方法是对f(x)在求不定积分,结果是Px(x)=x^2;第二步:求出y=lnx的反函数,
x再问:能否给一下详细过程?再答:就是分别讨论一下,分别另2x+1=0;x-4=0;得到x=-1/2x=4然后分开看当x=-1/2时|2x+1|=2x+1x=4时|x-4|=x-4然后把x综合一下看看
当a=-1时,g(x)=-lnx/x求导后得到g‘(x)=(lnx-1)/x^2令g‘(x)=(lnx-1)/x^2>0得到x>e令g‘(x)=(lnx-1)/x^2
1)证明:令x=0;可得-f(y)=f(-y)所以为奇函数;2)证明:设x4所以-5x+1113/5
令f'=-x^2+2x+m^2-1=-(x-1)^2+m^2=0得到驻点x1=1-m,x2=1+mf''=-2x+2因为f''(1-m)=2m>0,所以x1为函数的极小值点因为f''(1+m)=-2m
对f(x)求导得f'(x)=1-a/(2x),要求f(x)的单调增区间,则求f'(x)>=0,则1-a/(2x)>=0.即a/(2x)0时,x>=a/2,当a
先得切点(1,0) 在对f(x)求导f'(x)=(x^2-x+1)/x^2 得斜率k=1l :y=x-1求导得f'(x)=(ax^2-x+a)
F(X)=cos(√3x+t)F'(X)=-√3sin(√3x+t)F(X)+F'(X)=cos(√3x+t)-√3sin(√3x+t)是奇函数所以F(0)+F'(0)=0即cost-√3sint=0
解题思路:化简f(2-x)=f(2+x)可得f(-x)=f(4+x),再由f(7-x)=f(7+x)化简可得f(-x)=f(14+x);从而可得f(x)=f(10+x);从而证明.解题过程:证明:∵f
可以取到的,因为f(x+y)=fx+fy.取y=0,得到f(0)=0,再取y=-x,得到f(x)==-f(x),那么f(x)就是奇函数.函数图像关于原点对称,在(-6,+6)上必须有最大值和最小值.
这是求什么啊,怎么连个问题也没有
fx·f(x-2)=13T=4周期是4很高兴为你回答问题,如果有什么不懂或者疑惑请继续追问.如果没有疑问请采纳.再问:求过程!!再问:是fx·f(x+2)=13再答:对啊,所以可以换成我写的那个意思再
fx=x(e^x-1)-1/2x^2f'(x)=e^x-1+x*e^x-x=(1+x)e^x-(1+x)=(x+1)(e^x-1)x+1是增函数e^x-1是增函数令(x+1)(e^x-1)>=0∴x=
再问:fx=sin²x+2/sin²x这样的为什么等号取不到1+2我知道是对但是2根号2我觉的也对再答:
fx=f’x,不可能啊再问:fx-f’x再问:fx-f’x再答:设函数f(x)=x³+bx²+cx,且g(x)=f(x)-f’(x)为奇函数,①求b、c的值;②求g(x)的单调区间
1.先对Fx求导,由题意知F`(1/2)=0可得出a的值2.由F`(x)=2a^2,再根据x的范围可解
你这个函数里没有出现a啊……f(x)的单调递增区间是:[0,+∞)再问:错了,是函数fx=x(e^x-1)-ax^2再答:哦,好的这样的话,一般的高中方法可能不能用了,应该需要求导:f'(x)=(x+
log2x(x>0)f(x)=log(1/2)(-x)(xf(-a)当a>0,则-alog(1/2)alog2a>-log2alog2a+log2a>02log2a>0a>1当a0log(1/2)(-