设函数fx具有二阶连续导数

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 06:05:41
设函数fx具有二阶连续导数
设f(x)具有二阶连续导数,求∫xf''(x)dx

∫xf''(x)dx=∫xdf'(x)=xf'(x)-∫f'(x)dx=xf'(x)-∫df'(x)=xf'(x)-f(x)+C

设函数W=f(x+y+z,xyz),f具有二阶连续偏导数,求a*a*w/ax*az

令u=x+y+z,v=xyzf/u=f'1,f/v=f'2w/x=f/u*u/x+f/v*v/x(∵u/x=1,v/x=yz)=f'1+yzf'22w/

设f(x)在[0,1]上具有二阶连续导数,且|f''(x)|

f(0)=f(x)+f'(x)(0-x)+0.5f''(a)(0-x)^2f(1)=f(x)+f'(x)(1-x)+0.5f''(b)(1-x)^2两式相减,移项,取绝对值得|f'(x)|=|f(1)

设函数fx具有一阶连续导数,且曲线y=fx与y=sinx在原点处相切,则limx趋于正无穷根号下xf(2/x)等于多少?

相切就是切线斜率相同.故在x=0点,f'(x)=(sinx)'即f'(0)=1而f(x)又是过原点的故f(0)=0那么limxf(2/x)=2*limf(2/x)/(2/x)令t=2/x得limf(2

高数题,设函数fx具有二阶连续导数,且x趋向于0时,limfx/x=0,f''(x)=4,求x→0lim(1+fx/x)

lim(1+f(x)/x)^(1/x)=e^[limf(x)/x^2]=e^[limf'(x)/2x]=e^[limf''(x)/2]=e^(4/2)=e^2

设函数z=f(u,v)具有二阶连续偏导数,z=f(x-y,y/x),求a^2z/axay

令u=x-y,v=y/xaz/ax=az/au×au/ax+az/av×av/ax=fu-y/x^2×fva^2z/axay=a(az/ax)/ay=a(fu-y/x^2×fv)/ay=a(fu)/a

设函数z=f(x,x/y),f具有二阶连续偏导数,求az/ax,a^2z/axay

z=f(x,x/y),x与y无关因此,z'x=f'1*(x)'+f'2*(x/y)'=f'1+f'2/yz''xy=(z'x)'y=(f'1+f'2/y)'y=f''11(x)'+f''12*(x/y

设函数F(X)具有二阶连续导数,且满足F(X)=[微分(上限X下限0)F(1-t)dt]+1,求F(X)

求导F'(x)=F(1-x)变换变量F'(1-x)=F(x)在对F'(x)=F(1-x)求导F''(x)=-F'(1-x)=-F(x)解得F(x)=Acosx+Bsinx∵F(0)=1,F'(1)=F

设f(x)在点a的某领域内具有二阶连续导数,求

首先要说明:不是求“在x→0时的极限值”,而是求“在h→0时的极限值”因为设f(x)在点a的某领域内具有二阶连续导数,所以:lim(h→0){[f(a+h)+f(a-h)-2f(a)]/h^2}.是(

一道高数导数的题目设函数F(X)具有二阶连续导数,且X趋向于0时,LIM F(X)/x =0 f``(0)=4 求x趋向

由x趋于0时,f(x)/x=0,知道f(0)=0,f'(0)=limf(x)/xlim(1+f(x)/x)^(x/f(x))=e所求lim(1+f(X)/X)^(1/X)=lim(1+f(x)/x)^

设函数f(u,v)具有二阶连续偏导数,z=f(x,xy),则∂

∵z=f(x,xy),令u=x,v=xy∴∂z∂x=f′1+yf′2∴∂2z∂x∂y=∂∂y(f′1+yf′2)=∂f′1∂y+∂∂y(yf′2)═(∂f′1∂u∂u∂y+∂f′1∂v∂v∂y)+f′

设函数z=f(sinx,xy),其中 具有二阶连续偏导数,求ε^2z/εxεy

设u=sinx,v=xydz/dx=dz/du*du/dx+dz/dv*dv/dx=cosxf1'+yf2'd^2z/dxdy=d(dz/dx)/dy=(-sinx)f1'+cosx*df1'/dx+

设函数f(x)在[a,b]上连续,在(a,b)内具有二阶连续导数,证:存在ξ∈(a,b)使(如图)

这是中值定理的应用的题目.可考虑分别对f(b)-f[(a+b)/2],f[(a+b)/2]-f(a)用Lagrange中值定理,再用一次Lagrange中值定理,即可得.再问:假设f'(ξ1)=f(b

设函数z=f(xy,y/x)具有二阶连续偏导数,求 a^2z/axay

设u=xy,v=y/x,则z=f(u,v),所以ðz/ðx=f'1*ðu/ðx+f'2*ðv/ðx=yf'1-yf'2/x^2,注意到f'1

具有二阶连续偏导数,具有二阶连续导数,分别代表了什么?具有一阶连续偏导或一阶连续导数呢

首先偏导数是针对二元或二元以上的函数,导数是针对一元函数;二阶偏导数连续,就是说二阶偏导数存在,并且二阶偏导数是连续函数;二阶导数连续就是说二阶导数存在,并且这个二阶导函数是连续函数;一阶类似.希望可

一个二元函数具有二阶连续偏导数是什么意思

二元函数f(x,y)具有二阶连续偏导数指的是偏导数    fx(x,y),fy(x,y)关于(x,y)是连续的.再问:二阶偏导数应该是对二元函数求两次偏导吧?再答:  哦,看走眼了。应该是:二元函数f

设函数f(x)具有二阶连续导数,且f"(x)不等于0.

根据泰勒公式f(x+h)=f(x)+f'(x)h+(1/2)f''(x)h^2+o(h^2)于是:f(x)+hf'(x+θh)=f(x)+f'(x)h+(1/2)f''(x)h^2+o(h^2)θ{[

设u=f(x,x/y),其中f具有二阶连续偏导数,求u对x的二阶连续偏导数,

再问:请问那个f12的二阶导数是怎么来的啊再答:前面两个都来自f1'对x的偏导数再问:哦再问:再问您一下,还是这道题,先对x再对y求二阶连续偏导怎么做啊再问:u先对x再对y再答:再问:多谢再问:请问最