设函数fx在x=2处连续,且lim(x趋向于2)(f(x) (x-2))=5则

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 05:09:41
设函数fx在x=2处连续,且lim(x趋向于2)(f(x) (x-2))=5则
设函数fx具有一阶连续导数,且曲线y=fx与y=sinx在原点处相切,则limx趋于正无穷根号下xf(2/x)等于多少?

相切就是切线斜率相同.故在x=0点,f'(x)=(sinx)'即f'(0)=1而f(x)又是过原点的故f(0)=0那么limxf(2/x)=2*limf(2/x)/(2/x)令t=2/x得limf(2

设fx在x=0处连续,且limf(x)/x存在,证明f(x)在x=0处可导

因为limf(x)/x存在,且x=0处连续,所以f(0)=0,所以limf(x)/x=lim[f(x)-f(0)]/x-0=f'(0),所以f(x)在x=0处可导

已知fx是定义在R上的偶函数,且f(1)=0,设f'x是函数fx的导函数

答:定义在R上的偶函数f(x)有:f(-x)=f(x)所以:f(-1)=f(1)=0因为:[xf'(x)-f(x)]/x^2

已知函数fx=x^3-x^2+ax+b若函数fx在x=1处取得极值,且函数fx只有一个零点,求b

解由函数fx=x^3-x^2+ax+b若函数fx在x=1处取得极值知f'(1)=0由f'(x)=3x^2-2x+a即f‘(1)=3-2+a=0解得a=-1即f(x)=x^3-x^2-x+b得f'(x)

设函数fx是定义在R上的奇函数,且对任意x属于R都有fx=f(x+4),当x属于(-2,0)时,fx

∵函数f(x)是定义在R上的奇函数且对任意x属于R都有f(x)=f(x+4)∴f(0)=f(4)=0f(x)=-f(-x)f(x)为周期为4的函数∴f(2012)=f(0)f(2011)=f(-1)∵

设函数f(x)在负无穷到正无穷内连续,且F(x)=∫(0到x)(x-2t)f(t)dt,证明若fx为偶函数,则Fx也是偶

再问:-x怎么变成x的再答:那一步令u=-t。所以上下限都加负号

设函数fx=x+ax^2+blnx,曲线y=fx过p(1.0),且在p点处的切线斜率为2 证明fx≤2x-2

fx=x+ax^2+blnx带入x=1y=0得1+a=0得a=-1求导f'(x)=1+2ax+b/x带入x=1得1+2a+b=2所以b=3f(x)=x-x²+3lnx设g(x)=x-x

设二元函数f具有连续偏导数,且f(1,1)=1,fx'(1,1)=2,fy'(1,1)=3,如果φ(x)=f(x,f(x

由    φ(x)=f(x,f(x,x)),可得    φ'(x)=f1(x,f(x,x))+f2(x,f(x,x))*[f1(x,x)+f2(x,x)],于是 φ'(1)=f1(1,f(1,1))+

设函数f(x)具有连续的导数,且函数F(x)(解析式见图)在x=0处连续,求f'(0).

1=lim(x→0)F(x)所以lim(x→0)f(x)=01=lim(x→0)F(x)=lim(x→0)f(x)/x+lim(x→0)3ln(1+x)/x=lim(x→0)(f(x)-f(0))/(

证明:有f(x+y)=fx+fy且fx在0处连续,则函数fx在R上连续,且fx=ax,其中a=f(1)

亲,百度一下柯西函数方程吧.过程过于复杂的

设函数fx是定义在(负无穷,0)∪(0,正无穷)上的函数,且满足3f(x)+2f(1/x)=4x,求fx解析式

令y=1/x,则方程化为:3f(1/y)+2f(y)=4/y;将这个式子中的y换成x,得:2f(x)+3f(1/x)=4/x;得到两个式子:1式:3f(x)+2f(1/x)=4x;2式:2f(x)+3

设函数fx在x=2处连续,且lim(x趋向于2)(f(x)/(x-2))=-3,则

lim(x-->2)f(x)=0=f(2)(分母-->0,分子一定趋于0,否则极限不存在)那么f`(2)=lim(x-->2)f(x)-f(2)/x-2=lim(x-->2)f(x)/x-2=-3

设奇函数fx在(0,+∞)上为增函数,且f(2)=0,则不等式[f(x)-f(-x)]/x

得2f(x)/X<0即f(x)×x<0画图2到正无穷和-2到0大于0负无穷到-2和0到2小于0讨论f(x)大于0x小于0和f(x)小于0x大于0两种情况解决再问:2f(x)/X<0即f(x)×x<0什

设函数fx=x²-2mx+1,求函数fx在[0,4]上的最小值.

f(X)=(X-m)^2+1-m^2,对称轴X=m,①当m≤0时,最小f(0)=1,②当04时,最小f(4)=5-8m.

设函数f(x)在x=2处连续,且lim(x→2)f(x)/(x-2)(x→2)=3,求f'(2).

答案是3么由已知条件知道f(x)与x-2是同阶无穷小,所以f(2)是0又因为连续已知条件其实就是x=2的导数再问:是3,但是为什么f(2)是0呢?再答:f(x)与x-2是同阶无穷小

设函数f(x)在x=2处连续,且lim(x)/(x-2)(x→2)=2,求f'(2).

题目写错了吧,lim(x→2)(x)/(x-2)=2分子应该是f(x)还能解,因为分母趋向于0,分子必须是分母的同阶无穷小,若是lim(x→2)f(x)/(x-2)=2,说明当x->2时f(x)=0f

已知函数fx=lnx/x-x 1.求函数fx单调区间 2.设m>0求fx在[m.2m]上的最大值

1)定义域为x>0f'(x)=(1-lnx)/x^2-1=(1-lnx-x^2)/x^2x>0时,lnx及x^2都是单调增函数,因此1-lnx-x^2是单调减函数,故1-lnx-x^2=0至多只有一个