设函数fx对任意x,y属于r,都有f负x等于负fx,fx加y

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 09:34:37
设函数fx对任意x,y属于r,都有f负x等于负fx,fx加y
设fx是定义在r上的函数,对任意xy属于R,恒有fx+y=fx+fy (3)若函数fx在R上是增函数,已知f1=1,且.

令x=y=0f(0)=2f(0)f(0)=0令y=-xf(0)=f(x)+f(-x)=0f(x)=-f(-x)是奇函数f(2)=f(1)+f(1)=2f(2a)>f(a-1)+2=f(a-1)+f(2

高中数学题:设函数f(x)对任意x、y属于实数R都有f(x+y)=f(x)+f(y),且x

1.首先令x=0,y=0,有f(0)=f(0+0)=f(0)+f(0),解出f(0)=0然后令y=-x,有f(0)=f(x-x)=f(x)+f(-x)=0所以f(-x)=-f(x)所以函数是奇函数2.

已知函数f(x)的定义域为R,且对任意x,y属于R都有f(x+y)=f(x)+f(y),判断fx的奇偶性并证明

令x=y=0由题可得f(0+0)=f(0)+f(0)=>f(0)=0又令y=-xf(x-x)=f(x)+f(-x)=0所以f(x)=-f(-x)所以f(x)为奇函数

设函数fx是定义在R上的奇函数,且对任意x属于R都有fx=f(x+4),当x属于(-2,0)时,fx

∵函数f(x)是定义在R上的奇函数且对任意x属于R都有f(x)=f(x+4)∴f(0)=f(4)=0f(x)=-f(-x)f(x)为周期为4的函数∴f(2012)=f(0)f(2011)=f(-1)∵

设f(x)是定义在R+上的增函数,并且对任意的x>0,y>0,fxy=fx+fy总成立.

(1)证明:.令x=y=1,∴f(1)=f(1*1)=f(1)+f(1)∴f(1)=0又f(x)是定义在R+上的增函数x>1时,f(x)>0(2).f(3)=1∴,令x=y=3,f(3)+f(3)=f

已知函数fx 对任意x,y属于R,都有fx+fy=fx+y,当x大于0时,fx小于0,f(-1)=2,求证fx是奇函数

令y=0f(x)+f(0)=f(x)∴f(0)=0令y=-xf(x)+f(-x)=f(0)=0f(-x)=-f(x)定义域R所以是奇函数

已知函数fx对任意x,y∈R,总有fx+fy=fx+y,且当x>0时,fx<0,f(-1)=2 求证:fx在R上是减函数

令x=y=02f(0)=f(0)f(0)=0令y=-xf(x)+f(-x)=f(0)=0f(x)=-f(-x)是奇函数设x2>x1,则x2-x1>0f(x2-x1)

已知函数fx对任意x y属于r总有fx+fy=f(x+y),切当x>0时,fx

令x=y=02f(0)=f(0)f(0)=0令y=-xf(x)+f(-x)=f(0)=0-f(x)=f(-x)是奇函数

已知定义在R上的函数Y=F(X)对任意实数X满足1FX=F(-X) 2 F(-X+派)=FX且当X属于O,派/2时 FX

因为f(-x)=f(x),且f(-x+π)=f(x)所以f(-x)=f(-x+π)f(-7π/3)=f(-7π/3+π)=f(-7π/3+π+π)=f(-π/3)因为f(-x)=f(x),所以f(-π

设函数fx为奇函数且对任意xy属于R都有fx-fy=f (x-y)当x0 f(1)=-5,求f(x)

1)证明:令x=0;可得-f(y)=f(-y)所以为奇函数;2)证明:设x4所以-5x+1113/5

证明题,设函数f(x)对任意x,y属于R

f(x+y)=f(x)+f(y)-->f(0)=2f(0)-->f(0)=0-->f(x)+f(-x)=f(0)-->f(x)=-f(-x)-->f(x)是奇函数2.x1>x2-->f(x1)-f(x

已知函数fx满足fx=-f(-x),并对任意x,y属于R,总有fx+fy=f(x+y),切当x>0时,fx

1)令x=a,y=1,a∈Rf(a)+f(1)=f(a+1)f(a+1)-f(a)=f(1)=-2/3

设f(x)是定义在R上的函数,对任意x,y属于R ,恒有f(x+y)=f(x)=f(y).

1、因为f(x+y)=f(x)+f(y)那么f(0+0)=f(0)+f(0)即f(0)=2f(0)所以,f(0)=02、首先,该函数的定义域是关于原点对称的f(x)+f(-x)=f(x-x)=f(0)

设函数fx=的定义域为R,对任意函数x,y都有f(x+y)=fx+fy,又当x>0时,fx=

可以取到的,因为f(x+y)=fx+fy.取y=0,得到f(0)=0,再取y=-x,得到f(x)==-f(x),那么f(x)就是奇函数.函数图像关于原点对称,在(-6,+6)上必须有最大值和最小值.

设函数fx为奇函数且对任意xy属于R都有fx-fy=f (x-y)当x0 f(1)=-2

f(x)-f(y)=f(x-y)令x=2,y=1得f(2)-f(1)=f(2-1)=f(1)所以f(2)=2f(1)=2×(-2)=-4当x<0时,f(x)>0又f(x)为奇函数所以当x>0,f(x)

1、设函数fx为奇函数且对任意xy属于R都有fx-fy=f (x-y)当x0 f(1)=-5,求f(x)在[-2,2]上

1、设函数fx为奇函数且对任意xy属于R都有fx-fy=f(x-y)当x0f(1)=-5,求f(x)在[-2,2]上的最大值解析:∵函数f(x)为奇函数,其定义域为R,∴f(-x)=-f(x),f(0

设函数f(x)满足f(0)=1,且对任意X,Y属于R都有F(xy+1)=f(x)*f(y)-f(y)-x+2 求(FX)

令y=0,F(1)=f(x)*f(0)-f(0)-x+2=f(x)-x+1令y=1,x=0,F(1)=f(0)*f(1)-f(1)+2=2所以f(x)-x+1=2,f(x)=x+1F(xy+1)=(x

设函数fx对任意的实数x,y 有f(x+y)=fx+fy,且当x>0时,fx

f(0+0)=f(0)+f(0)f(0)=00=f(0)=f(x+(-x))=f(x)+f(-x)f(x)=-f(-x)是奇函数f'(x)=f'(-x)当x>0时,fx