设区域D 是的公共部分
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 01:13:38
x^2+y^2≤1与x^2+y^2≤2x有两个交点.分别从原点引线至两个交点,将公共部分分为三个区域,分别是(-π/2,-π/3),(-π/3,π/3),(π/3,π/2),这就是三个角的取值范围,用
积分区域是圆S=πf(x,y)=1/π,-√(2y-y²)再问:没问题了
选D利用二重积分的积分区域对称性
取L:x²+y²+4x-2y≤0===>(x+2)²+(y-1)²≤5∮L(x²-y)dx+(-y²+2x)dy=∫∫D[∂/&
因为二维随机变量(X,Y)在区域D上服从均匀分布,所以当(x,y)∈D时,概率密度f(x,y)为区域D的面积的倒数,当(x,y)不在D内时,f(x,y)为0因为D:0
随机变量(X,Y)在区域D服从均匀分布,则联合密度函数P(X,Y)=1/Ω,Ω=1/2即区域D的面积,为直线x=0,y=x,y=1所围的部分,所以P(X,Y)=2
本题是几何概型问题,区域E的面积为:S1=∫20x2dx=13x3|20=83,∴“该点在E中的概率”事件对应的区域面积为83,则落在E内的点的概率是838=13.设落在E内的点的个数为n,∴n30=
say"community"isfine.
可以计算出D的面积为1/2所以(X,Y)的密度函数为f(x,y)=2(x,y)∈D而P(X+Y=y.0
令v(x,y)=0不就行了么、、、或者u(x,y)在每处的偏导数都存在
设D2:由y=x^3y=-x^3x=-1所围成的区域.D3:由y=x^3y=-x^3y=1所围成的区域.则根据重积分的区域可加性和对称性:∫∫(D)(xy+cosxsiny)dxdy=∫∫(D2)(x
在这里D={(x,y)|0
梯度算子就可以了I=rgb2gray(im);%调用自编函数读取图像,并转化为灰度图象;[height,width]=size(I);%预处理I_edge=zeros(height,width);%创
既然是均匀分布,用D1的面积占D的面积的比例更简单,一看就知道答案是1/2再问:请教,这个积分解的过程是什么,我解出来总是带x,答案是含有y的一个值再答:常数的积分是这个常数值乘以区间长度,也就是4*
publicarea再答:或publicdistrict
1)E(X)=E[E(X|Y)],就是先对某Y值上的X积分再对全局积分2)你求出面积,其倒数就是了.3)E(Z)=E(2X+Y)=2E(X)+E(Y)之后如1计算X和Y期望,D(Z)=E(Z^2)-E
作y=-x,在D2上,由于区域关于x轴对称,因此可考虑y的奇偶性,xy与cosxsiny关于y均为奇函数,因此在D2上积分为0,这样积分区域只剩下D1.在D1上,由于区域关于y轴对称,因此考虑x奇偶性
选择A再问:额。有步骤嘛。。
区域D的面积为:SD=∫e20dx∫1x0dy=∫e211xdx=lnx|e21=2,所以(X,Y)的联合概率密度为:f(x,y)=12 (x,y)∈D0