设双曲线的实轴长为2a,一个焦点为F,虚轴的一个端点为B

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 17:15:05
设双曲线的实轴长为2a,一个焦点为F,虚轴的一个端点为B
【急】设双曲线x^2/9-y^2/16=1的右顶点为A,右焦点为F,过点F平行双曲线的一条渐近线的直线与双曲线交于点B

题目不是说了这条平行于一条渐进线的直线过F点么?F点不就是焦点么?你也许是没看清楚题目.或者没理解题目的意思.下次细心点咯~

双曲线C的左右焦点分别为F1,F2,且F2恰为抛物线y2=4x的焦点,设双曲线C与该抛物线的一个交点为A,若△AF1F2

抛物线的焦点坐标(1,0),所以双曲线中,c=1,又由已知得|AF2|=|F1F2|=2,而抛物线准线为x=-1,根据抛物线的定义A点到准线的距离=|AF2|=2,因此A点坐标为(1,2),由此可知是

设直线L过双曲线X2-Y2/3=1的一个焦点,交双曲线于A,B亮点,O为坐标原点,若OA向量乘以OB向量=0,求|AB|

a²=1b²=3c²=a²+b²=1+3=4c=2不妨设直线L过双曲线的右焦点(2,0)点A坐标为(x1,y1)点B坐标为(x2,y2)向量OA=(x

设双曲线X^2/a^2-Y^2/b^2=1(a>0,b>0)的左右顶点分别为A1、A2若点P为双曲线右支上的一点且直线P

设P(x0,y0),A1(-a,0),A2(a,0)PA1斜率=y0/(x0+a)=1/2,PA2斜率=y0/(x0-a)=2y0=x0/2+a/2,y0=2x0-2a,x0=5a/3,y0=4a/3

设F1,F2分别是双曲线的左右焦点,P为双曲线右支上任意一点,当PF2^2/PF1的最小值为8a时,则该双曲线的离心

设|PF2|=m则|PF1|=2a+m(m≥c-a)所以丨PF1丨^2/丨PF2丨=(2a+m)²/m=4a²/m+m+4a≥2√4a²+4a=8a当且仅当m=2a时等号

设双曲线x2a2−y29=1(a>0)的渐近线方程为3x±2y=0,则a的值为(  )

x2a2−y29=1(a>0)的渐近线为y=±3ax,∵y=±3ax与3x±2y=0重合,∴a=2.故选C.

设双曲线C:X^2-Y^2=1(a>0,b>0)的离心率E=2,经过双曲线 右焦点F且斜率为根号15/3的直线交双曲线与

思路:1:联立直线方程和椭圆方程,再利用弦长公式:d=√(1+k²)|x1-x2|题目已经告诉你K=15/3,这样直线方程为Y=15/3X+b联立直线方程和双曲线方程,得到|X1-X2|,利

设P为双曲线 X^2/a^2 一y^2=1 虚轴的一个端点,Q为双曲线上的一个动点, 则 |PQ|的最小值为

不妨设P是虚轴的上端点,即P(0,1)设Q(x,y),则:x²/a²-y²=1,可得:x²=a²+a²y²PQ²=x&#

1、设双曲线x^2/9-y^2/16=1的右顶点为A,右焦点为F,过点F平行双曲线的一条渐近线的直线与双曲线交于点B,求

1、渐近线方程为:y=±4x/3,设右焦点坐标F(c,0),c=√(a^2+b^2)=5,过点F平行双曲线的一条渐近线的直线斜率=±4/3,y=±4/3(x-5),代入双曲线方程,解出B点坐标,x^2

已知P是双曲线x^2/a^2-y^2/9=1右支上的一点,双曲线的一条渐近线方程为3x-y=0,设F1、F2分别为双曲线

x^2/a^2-y^2/9=13x=y可以推出a=1双曲线x^2-y^2/9=12a=2=|PF1|-|PF2|椭圆的性质|PF2|=3|PF1|=3+2=5

1.设双曲线x^2/a^2-y^2/b^2=1(a>0,b>0)的虚轴长为2,焦距为2倍根号3,则双曲线渐近线方程为?

1.c=根号3b=1a=根号2渐近线方程为y=±1/(根号2)x2.感觉已知条件不足啊...不好意思~

1.设双曲线C1的方程为x^2/a^2 -y^2/b^2=1(a>0,b>0),A、B为其左右两顶点,P是双曲线C1上任

1,双曲线的性质:曲线上的一点和两个顶点的连线的乘积为横正值即b^2/a^2(反之亦成立)所以,kQA*KQB=a^2/b^2,所以说也是双曲线,即为x^2/b^2-y^2/a^2=1那么第二问就很好

设双曲线C:x^2/a^2-y^2/b^2=1(a>0,b>0)的离心率为e=2,经过双曲线的右焦点F且斜率为(根号15

e=2,即c/a=2,故b²=3a²,代入双曲线方程化简为3x²-y²=3a².(1)焦点F(c,0),故直线可设为y=√15/3(x-c),代入(1

设双曲线的方程为x^2/a^2-y^2/b^2=1(a>0,b>0),其相应的实轴长为4根号3,焦点到渐近线的距离为根号

1、2a=4√3,a=2√3,设一条渐近线与X轴夹角为θ,tanθ=b/a,secθ=√[1+(tanθ)^2]=(1/a)√(a^2+b^2)=c/a,cosθ=a/c,sinθ=√(c^2-a^2

设双曲线:y^2/a^2-x^2/3=1的焦点为F1,F2,离心率为2.

a^2+b^2=c^2且e^2=c^2/a^2=(a^2+b^2)/a^2=1+3/a^2=4解得a^2=1

设双曲线的渐近线方程为2x±3y=0,则双曲线的离心率为?

渐近线方程为2x±3y=0,则离心率有两种情况.将方程化为y=±(2/3)•x(1)若焦点在x轴上,则b/a=2/3,e²=c²/a²=(a²+b&

设双曲线x^2/a^2-y^2/b^2=1的左右焦点为F1,F2,P是双曲线右支上的一点

设内切圆与PF1切于A,与PF2切于B,则|PA|=|PB|,|F1A|=|F1Q|,|F2B|=|F2Q|因为|F1Q|=|F1O|+|OQ|,所以|F1O|=|F1Q|-|OQ|=4-1=3,即c