设向量(6,a 1,3),

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 06:05:34
设向量(6,a 1,3),
设3阶方阵A属于特征值-1和1的特征向量是a1 a2 向量a3满足Aa1=a2+a3 证明a1 a2 a3

答案见补充图片再问:怎么看补充图片啊再答:在上传中,百度抽风,要等一会

设a1,a2,a3均为3维列向量,A=(a1,a2,a3).B=(a1+a2+a3,a1+2a2+4a3,a1+3a2+

(a1+a2+a3,a1+2a2+4a3,a1+3a2+9a3)=(a1,a2,a3)P其中P=111123149即有B=AP所以|A|=|A||P|=|P|=(2-1)(3-1)(3-2)=2.注:

设A是3阶矩阵,a1a2a3是三维线性无关的列向量,且Aa1=4a1-4a2+3a3 Aa2=负6a1-a2+a3 Aa

改写为A(a1a2a3)=(a1a2a3)B的形式,矩阵A,B有相同的特征值

设向量 组a1=(1,2,1,3),a2=(4,-1,-5,-6),a3=(1,-3,-4,-7),a4=(2,1,-1

a1=(1,2,1,3),a2=(4,-1,-5,-6),a3=(1,-3,-4,-7),a4=(2,1,-1,0)写成:(14122-1-311-5-4-13-6-70)等价于(14120-9-5-

设向量组a1,a2,a3,a4的秩是3,向量组a1,a2,a3,a5的秩是4,则向量组a1,a2,a3,a5-a4的秩是

因为a1,a2,a3,a5的秩是4所以a1,a2,a3线性无关,且a5不能由a1,a2,a3线性表示又因为a1,a2,a3,a4的秩是3所以a4可由a1,a2,a3线性表示所以a5-a4不能由a1,a

设向量组a1,a2,a3线性无关,证明:向量组B1=a1+2a2+a3,B2=a1+a2+a3,B3=a1+3a2+4a

考虑M=121111134是个可逆矩阵A=(a1,a2,a3)B=(b1,b2,b3)MA=B既然A,M满秩,B一定满秩,因此所述三个向量线性无关或者从定义,如果存在c1,c2,c3使得c1b1+c2

设n维向量组a1,a2,a3线性无关,判断a1+2a2,2a2+3a3,a1+2a2+3a3的相关性

a1+2a2,2a2+3a3,a1+2a2+3a3线性无关.r[a1+2a2,2a2+3a3,a1+2a2+3a3]可以求出来,具体为第3列减第二列,然后以此类推,变为a1,a2,a3.

设a:a1,a2,…a8是一个6维向量组,证明:a中至少有两个向量可以由其余向量线性表示

ifT={a1,a2,a3,a4,a5,a6,a7,a8}是6维向量组thenT的秩R(T)=6assmueT中有一个一下的向量可由其余向量线性表出thenR(T)》=7sotheassmuption

线性代数小问题设n维向量a1,a2,a3满足2a1-a2+3a3=0,对于任意n维向量b,向量组l1b+a1,l2b+a

令l1b+a1=x1,l2b+a2=x2,l3b+a3=x3则R(x1,x2,x3)=R(2x1-x2+3x3,x2,x3)=R((2l1-l2+3l3)b,l2b+a2,l3b+a3)=R(b,l2

设向量组有a1=(14,6,7,35),a2=(12,104,6,30),a3(6,21,3,15),a4=(8,9,4

秩是2,这个向量数字不太好算,算了一下太麻烦,你还是自己算吧向量竖排,然后进行归一化

设向量a=(a1,a2),向量b=(b1,b2),定义一种向量积:向量a*向量b=(a1,a2)*(b1,b2)=(a1

向量OP=(x,sinx)向量OQ=向量m*向量OP+向量n=(2x+Pi/3,1/2sinx)Q点坐标(2x+Pi/3,1/2sinx)Q点轨迹y=1/2sin(x/2-Pi/6)最大值A=1/2,

设矩阵A=[a1.a2.a3.a4],其中a2.a3.a4线性无关,a1=2a3-3a4.向量b=a1+2a2+3a3+

设x=(x1,x2,x3,x4)',首先考虑对应的齐次方程Ax=0,显然r(A)=3,所以基础解系仅含一个解,而方程Ax=0即x1a1+x2a2+x3a3+x4a4=0显然有一个解是(1,0,-2,3

设A=(a1,a2,a3), B=(b1,b2,b3) 是两个三维向量,且ATB={3 0 2 , 6 0 4 , 9

A=(2,4,6)*xB=(3,0,1)/xx为一个常数,不影响结果因此AB'=6+6=12再问:可答案给的是9啊再答:不好意思,计算错了。A=(1,2,3)*xB=(3,0,2)/xx为一个常数,不

高等代数计算题:设V是3维向量空间的一组基:a1,a2,a3

1+b3=a1+a2+a3,b1+b2=a2+a3,b2+b3=a1+a3得到b1=a2+a3/2;b2=a3/2;b3=a1+a3/2;1.要证明b1,b2,b3是V的一组基,只要证明它们线性无关就

设向量a1,a2,a3线性相关,证明:向量a1+a2,a2+a3,a1+a3 线性相关

证明:因为向量组a1+a2,a2+a3,a1+a3可由a1,a2,a3线性表示所以r(a1+a2,a2+a3,a1+a3)

证明向量组线性相关设向量组.,a1,a2,a3 ,线性相关,并设b1=a1+a2,b2=a1-2a2,b3=a1+a2+

方法一:b1-b2+b3=0,所以向量组B线性相关方法二:矩阵B=(b1,b2,b3)=(a1,a2,a3)C=AC,其中C=121-314-101|C|=0,所以秩(B)≤秩(C)<3,所以向量组B

设a1,a2,a3为3维列向量,行列式|a1 a2 a3|=d,则|3a1+a2 2a2 a3|=

|3a1+a22a2a3|=|3a12a2a3|+|a22a2a3|=|3a12a2a3|+0=3^3*2^3|a1a2a3|=216|a1a2a3|=216d

设3×2矩阵A=(a1,a2),B=(b1,b2),其中a1,a2,b1,b2是3维列向量,若a1,a2

(C)正确.b1,b2线性无关r(B)=2r(A)=r(B)A,B等价(D)充分但不必要