设向量(6,a 1,3),
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 06:05:34
答案见补充图片再问:怎么看补充图片啊再答:在上传中,百度抽风,要等一会
(a1+a2+a3,a1+2a2+4a3,a1+3a2+9a3)=(a1,a2,a3)P其中P=111123149即有B=AP所以|A|=|A||P|=|P|=(2-1)(3-1)(3-2)=2.注:
改写为A(a1a2a3)=(a1a2a3)B的形式,矩阵A,B有相同的特征值
a1=(1,2,1,3),a2=(4,-1,-5,-6),a3=(1,-3,-4,-7),a4=(2,1,-1,0)写成:(14122-1-311-5-4-13-6-70)等价于(14120-9-5-
因为a1,a2,a3,a5的秩是4所以a1,a2,a3线性无关,且a5不能由a1,a2,a3线性表示又因为a1,a2,a3,a4的秩是3所以a4可由a1,a2,a3线性表示所以a5-a4不能由a1,a
考虑M=121111134是个可逆矩阵A=(a1,a2,a3)B=(b1,b2,b3)MA=B既然A,M满秩,B一定满秩,因此所述三个向量线性无关或者从定义,如果存在c1,c2,c3使得c1b1+c2
a1+2a2,2a2+3a3,a1+2a2+3a3线性无关.r[a1+2a2,2a2+3a3,a1+2a2+3a3]可以求出来,具体为第3列减第二列,然后以此类推,变为a1,a2,a3.
ifT={a1,a2,a3,a4,a5,a6,a7,a8}是6维向量组thenT的秩R(T)=6assmueT中有一个一下的向量可由其余向量线性表出thenR(T)》=7sotheassmuption
令l1b+a1=x1,l2b+a2=x2,l3b+a3=x3则R(x1,x2,x3)=R(2x1-x2+3x3,x2,x3)=R((2l1-l2+3l3)b,l2b+a2,l3b+a3)=R(b,l2
秩是2,这个向量数字不太好算,算了一下太麻烦,你还是自己算吧向量竖排,然后进行归一化
向量OP=(x,sinx)向量OQ=向量m*向量OP+向量n=(2x+Pi/3,1/2sinx)Q点坐标(2x+Pi/3,1/2sinx)Q点轨迹y=1/2sin(x/2-Pi/6)最大值A=1/2,
设x=(x1,x2,x3,x4)',首先考虑对应的齐次方程Ax=0,显然r(A)=3,所以基础解系仅含一个解,而方程Ax=0即x1a1+x2a2+x3a3+x4a4=0显然有一个解是(1,0,-2,3
A=(2,4,6)*xB=(3,0,1)/xx为一个常数,不影响结果因此AB'=6+6=12再问:可答案给的是9啊再答:不好意思,计算错了。A=(1,2,3)*xB=(3,0,2)/xx为一个常数,不
1+b3=a1+a2+a3,b1+b2=a2+a3,b2+b3=a1+a3得到b1=a2+a3/2;b2=a3/2;b3=a1+a3/2;1.要证明b1,b2,b3是V的一组基,只要证明它们线性无关就
证明:因为向量组a1+a2,a2+a3,a1+a3可由a1,a2,a3线性表示所以r(a1+a2,a2+a3,a1+a3)
方法一:b1-b2+b3=0,所以向量组B线性相关方法二:矩阵B=(b1,b2,b3)=(a1,a2,a3)C=AC,其中C=121-314-101|C|=0,所以秩(B)≤秩(C)<3,所以向量组B
|3a1+a22a2a3|=|3a12a2a3|+|a22a2a3|=|3a12a2a3|+0=3^3*2^3|a1a2a3|=216|a1a2a3|=216d
(C)正确.b1,b2线性无关r(B)=2r(A)=r(B)A,B等价(D)充分但不必要