设命题p:函数f(x)=log_e[(ax^2-x 1 16 a])的定义
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 03:10:17
判断¬p是¬q成立的什么条件等价于判断q是p的什么条件.∵命题p:不等式|x-1|+|x+2|>m的解集为R,∴|x-1|+|x+2|的最小值大于m即可由绝对值的几何意义|x-1|+|x+2|表示数轴
因为p或q为真,p且q为假所以(1)P真Q假则有(将3,5代入式子)(3a-5)(9-a)>0(5a-5)(25-a)小于或等于0而a无解(2)P假Q真则有(3a-5)(9-a)小于或等于0(5a-5
ax-5>0p或q为真命题3a-5>0,a>5/35a-5>0,a>1有一个成立即可所以a>1p且q为假命题a>5/3和a>1都成立,即a>5/3是假命题a
命题p:∵函数f(x)=(a−32)x是R上的减函数,由0<a−32<1得32<a<52命题q:∵f(x)=(x-2)2-1,在[0,a]上的值域为[-1,3]得2≤a≤4∵p且q为假,p或q为真,得
p:ax^2-x+1/16a>0讨论a的取值1.a=0则-x>0,x<0,不满足定义域为R,舍去2.a>0∵定义域为R∴△<0∴a^2>4∴a>2或a<-2∴a>23.a<0∵开口向下,不可能使定义域
如上所述,P应该是真命题,q为假命题1.01/4;所以x>1/2+1/2a或x
解因为c>0,所以如果命题p:函数y=c2是真命题,那么0=2,当且仅当x=1/x时及x=1时函数f(x)=2所以当x∈[1/2,2],函数f(x)∈[2,5/2]>1/c所以1/c1/2又因为p或q
y=c^x为减函数,则01/c,即c>1/2或c
∵x∈[π4,π2],2x∈[π2,π],2x-π3∈[π6,2π3],∴sin(2x-π3)≥12∴sin2x−3cos2x+2=2sin(2x−π3)+2≥3,a<sin2x−3cos2x+2在x
(1)命题p:函数f(x)=lg(ax²-ax+1)的定义域为R,等价于:ax²-ax+1>0在R上恒成立.当a=0时,不等式可化为1>0,显然恒成立;当a≠0时,要使不等式恒成立
∵x∈[1,2]时,不等式x2+ax-2>0恒成立∴a>2−x2x=2x−x在x∈[1,2]上恒成立,令g(x)=2x−x,则g(x)在[1,2]上是减函数,∴g(x)max=g(1)=1,∴a>1.
1)假设p真q假,则对于命题一有:a=0或a>0且a^2-4a=1假设1解得0
∵f(x)=log121−axx−1为奇函数,∴f(-x)=-f(x),即f(x)+f(-x)=0,则log121−axx−1+log121+ax−x−1=log12(1−axx−1•1+ax−x−1
若P命题为真,Q命题为假,则:对于P命题:4a^2-16再问:为什么P恒为真命题啊。只有一个x使其成立不就行么再答:忽略,前面看错题目了,不好意思,以下略有修改若P命题为真,Q命题为假,则:对于P命题
P:由p得a>0且△1q:设t=3^x,t>03^x-9^x=t-t^2t^2-t+a>0对于t>0恒成立f(t)=t^2-t+a知t=1/2时,f(t)取最小值当f(1/2)>0时,f(t)>0对于
命题P:函数f(x)=lg(ax^2-x+a/16)的定义域为R,即对任意x,g(x)=ax^2-x+a/16>0,因此有a>0,且delta=1-4a^2/162命题q:不等式3^x-9^x0,即t
先求p,q【有定义且为真】时对应的a集合,再求他俩【有定义且为假】的对应a集合,用补集就行,注意a定义域的取值~P真:设|x-1|为M,M≥0,则0.5^M属于(0,1]『根据图像可得』,即0
命题p,易得{a|a>1}命题q,Δ=4-4log以a为底(3/2)再问:loga3/2>1怎么解得1
f(2x)=log(8x平方+7),则f(1)=令x=1/2原式f(1)=log(8×1/4+7)=log9