设四阶矩阵相似于,的特征值为2.3.4.5,为单位矩阵,则
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 17:02:15
∵A相似于B,∴A与B具有相同的特征值,即B的特征值:2、3、4、5,于是,B-E的特征值为:2-1、3-1、4-1、5-1,即:1、2、3、4,而矩阵的行列式等于其所有特征值的乘积:∴|B-E|=1
我把尊敬的刘老师的这个题抢了,呵呵.矩阵A和B相似,且A的特征值1,2,3,则B的特征值也是1,2,3.为增加可信性,请翻阅教材第121页定理3.今天是11.11,祝节日快乐.
看看能看懂不? 特征值都为正负1 对应相乘之后都是1 那个不影响结果~
已知3阶矩阵A与相似,则A与B有相同的特征值,所以2I-B有特征值2-1=1,2-2=0,2-2=-1即2I-B的非零特征值为2个,故R(2I-B)=2
矩形A的行列式为A的特征值之积即-2.因为矩形A相似的对角矩阵为[-1,1,2],相似的矩阵的序相等,所以A的序为3.设对矩形A特征值λ的特征向量为X,BX=A^2X+2AX-X=λ^2X+2λX-λ
:所求的B的行列式=1×(-2)×3=-6.
则A的全部特征值为1,2,3原因:相似矩阵有相同的特征值
|B-λE|=|P^(-1)AP-λE|=|P^(-1)AP-λP^(-1)EP|=|P^(-1)(A-λE)P|=|A-λE|你贴的等式里面多了一个P(或者理解成漏了一个P^{-1})
设f(x)=x-2x^2+3x^3由于A的特征值为1,2,-1所以B的特征值为f(1)=2,f(2)=18,f(-1)=-6.所以B的相似对角矩阵为diag(2,18,-6).(2)|B|=2*18*
线性代数课本上在对称矩阵的对角化那一节有个定理:设A为n阶对称阵,则必有正交阵P,使P^-1AP=P^TAP=^.其中^是以A的n个特征值为对角元的对角阵.所以对陈阵必可以对角化,它的对角矩阵对角线的
相似矩阵的特征值相同吧逆矩阵的特征值是原矩阵的倒数吧伴随是逆乘以|A|吧,|A|=1×-2×-3=6,特征值就是逆的6倍吧
∵A的特征值为:1/2,1/3,1/4,1/5,∴与之相似的B的特征值也为:1/2,1/3,1/4,1/5,∴B^(-1)的特征值为:2,3,4,5.又∵|B|=1/2·1/3·1/4·1/5=1/1
解:|A-λE|=3-λ242-λ2423-λc1-2c2,c3-2c2-1-λ202+2λ-λ2+2λ02-1-λr2+2r1+2r3-1-λ2008-λ002-1-λ=(-1-λ)^2(8-λ)所
相似矩阵特征值相同,(B-I)β=Bβ-Iβ=λβ-β=(λ-1)β,则B-I的特征值为λ-1再问:能不能解释一下,一下子看不懂啊再答:定义特征值时,不是Aα=λα,λ即为A的特征值(α是个特征向量还
B的特征值,2,2,2再答:所以B的相似为diag(2,2,2)再问:B的特征值怎么算再答:带进去啊再答:A的特征值带入A
∵四阶矩A与B相似,∴A与B具有相同的特征值,即:B的特征值为12,13,14,15,又∵B与B-1的特征值是互为倒数的,∴B-1的特征值为2,3,4,5,从而:B-1-E的特征值为2-1,3-1,4
四阶方阵A相似于B,A的特征值为2,3,4,5所以B的特征值为2,3,4,5B-I的特征值为2-1,3-1,4-1,5-1,即为:1,2,3,4所以|B-I|=1×2×3×4=24再问:为什么B的特征
由于4阶矩阵A与B相似,因此A与B具有相同的特征值∴B的全部特征值为-1,1,2,3∴B2-2B的全部特征值为(-1)2-2(-1)=3,12-2=-1,22-2•2=0,32-2•3=3∴|B2-2