设圆的直径服从区间(0,1)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 15:10:01
fX(x)=1,x∈(0,1)其他为0.P(X1}=1-P{max{X,Y}
max{X,Y}≤1实际上就等价于X和Y都小于等于1,而随机变量X与Y互相独立,于是P(max{X,Y}≤1)=P(X≤1)*P(Y≤1)而X和Y均服从区间[0,3]上的均匀分布故P(X≤1)=P(Y
我把解答写在图片里面,请参考图片
用最小值公式.就一下出来了.再问:能告诉我答案吗?再答:Z=min{X,Y}f(z)=2(1-z)0
(1)由已知,f(x)=1,(0
fx(x)=1,fy(y)=e^-yfx,y(x,y)=fx(x)fy(y)=e^-yP(x>y)=P(x>y|Y=y)=1-P(x
密度函数f(x)=1,0
随机变量X,Y(不独立也行),则E(X+Y)=E(X)+E(Y)随机变量X,区间【a,b】上的均匀分布,则E(X)=(a+b)/2E(X+Y)=E(X)+E(Y)=1/2+1/2=1
用分布函数法X服从(0,1)区间上的均匀分布f(x)=1,0
测量值x在区间[a,b]上服从均匀分布圆面积S的数学期望ES=π[Ex/2]^2=π[(a+b)/4]^2=π(a+b)^2/16再问:r的期望Er=(a+b)/4是不?再答:恩,就是这样
由于XY独立,那么E(X+Y)=EX+EY均匀分布其概率函数就是f(x)=1/(1-0)=1(0
X和Y相互独立则有fx(x)*fy(y)=f(x,y)Y服从均值为1/2的指数分布,即参数1/λ=1/2,λ=2然后就可以对联合分布P(Y
1x的概率密度为f(x)=1/(0.2-0)=5,0x)25e^(-5y)dy=1/e
/>1)X在(0,2)上均匀分布,所以X的密度函数是:通过积分可以求出X的分布函数:2)可以利用密度函数求出这个概率,也可以利用分布函数,以下为步骤,结果是0.5:3)我们可以把Y写成X的函数,Y=g
没有给出是否相互独立吗再问:没有给,不过应该是的吧,(是英文版的书,貌似没说独立这个词~)再答:若不独立,应该给出联合分布,若独立,就分解开求就行了饿:=E[x^2+4Y^2+Z^2-4XY+2XZ-
X:服从(0,1)均匀分布x~U(0,1)Y:X到a的距离。就是说Y~U(0,a)a>0.5或Y~U(0,1-a)a
由已知,f(x)=1/2,(-1再问:x��ȡֵ��ΧΪʲô�ǣ�-1,1������[-1,1]?���y��ȡֵ��ΧΪʲô��[-1,3)����ȡ��ô��再答:��Щ����ϸ�����⣬�
F(y)=P(Y=e^(-y/2))=1-P(x
EX=(a+b)/2->Er=[(1+3)/2]/2DX=(b-a)^2/12->Dr=[(3-1)/2]^2/12ES=π[Er]^2=π[(1+3)/4]^2=π16/16=πDS=π[Dr]^2
δ=x^2-4>=0解得x>2或