设均为n维非零列向量,证明线性无关
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 11:16:04
证明:设a为任一n维向量.因为a1,a2,…,an,a是n+1个n维向量,所以a1,a2,…,an,a是线性相关的.又因为a1,a2,…,an线性无关,所以r(a1,a2,…,an,a)=r(a1,a
设k1a+k2Aa=0(*)等式两边左乘A得k1Aa+k2A^2a=0由A^2a=0知k1Aa=0再由Aa≠0知k1=0代入(*)式得k2Aa=0同理得k2=0.所以k1=k2=0所以向量组a,Aa线
设∑ki*ai=0(对i求和),则(∑ki*ai)^TAaj=0(j=1,2,...,m),即kj*(aj^TAaj)=0,(j=1,2,...,m);而A正定,所以aj^TAaj>0,从而kj=0(
反证法就行了不妨设j,k列相关Bj=cBk则Ejj=cEjkEjj=1=>Ejk=1/c不等于0矛盾所以不存在j,k使线性相关
因为(Aα1,Aα2,...,Aαn)=A(α1,α2,...,αn)当A可逆时,r(Aα1,Aα2,...,Aαn)=r(α1,α2,...,αn)=n.所以Aα1,Aα2,...,Aαn线性无关.
证明:由C可逆知r(C)=n所以n=r(C)=r(AB)
证明:∵a1,a2,a3线性相关∴存在不全为0的数b1,b2,b3使b1a1+b2a2+b3a3=0又a2,a3,a4线性无关∴a2,a3线性无关∴若b1=0,则b2a2+b3a3=0∴b2=b3=0
已知n维向量组A:a1,a2线性无关,b1,b2线性无关,且a1,a2分别与b1,b2正交,证明a1,a2,b1,b2线性无关设x1a1+x2a2+y1b1+y2b2=0,证明x1=x2=y1=y2=
方程组Bx=0的解都是Cx=0的解,但是C可逆,所以Cx=0只有零解,所以Bx=0也只有零解,所以B的列向量线性无关
正定的定义若X!=0则X'AX>0题目有误
知识点:若A组可由B组线性表示,则R(A)
必要条件:任意(n+1)个n维向量必线形相关即任意n维向量b都可以由a1,a2,a3...an线性表出.充分条件:显然
应该要让P可逆.设A为n×m矩阵,A的列向量组线性无关,证明存在列向量线性无关的矩阵B(下标n(n-m),使得P=(A,B)可逆,且B‘A=0.证明:考虑齐次线性方程组A'x=0,系数矩阵A'的秩是m
反证,若n线性相关,写出来,带入m,其他的为0,可得到m线性相关!
证明:因为e1,e2,e3.en线性无关,且任一向量都可由n维基本向量组e1,e2,e3.en线性表示由已知,a1,a2,a3...an与e1,e2,e3.en等价.而等价的向量组秩相同所以r(a1,
令kb+k1a1+k2a2+k3a3=0两边用b做内积,得k[b,b]+k1[b,a1]+k2[b,a2]+k3[b,a3]=0因为b与a1,a2,a3分别正交,故[b,a1]=[b,a2]=[b,a
因为n=r(In)=r(AB)
R(A^T)=sA^Tx=0的基础解系含n-s个向量,令其构成矩阵B则B为列向量线性无关的n行n-s列矩阵且有A^TB=0,即有B^TA=0由于B的列与A^T的行正交(齐次线性方程组的解与系数矩阵的行
证明:矩阵AB的秩为r(AB)=r(Em)=m,而r(AB)=m.----------(1)另外由题意,B为n×m矩阵,且n>m,则可知r(B)
考虑方程ABx=0,由于A的列向量线性无关,所以只可能是Bx=0.这说明ABx=0的解空间与Bx=0的解空间相同,其中ABx=0解空间的维度为s-r(AB),Bx=0解空间的维度是s-r(B).两个方