设均为n维非零列向量,证明线性无关

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 11:16:04
设均为n维非零列向量,证明线性无关
设a1,a2,…,an是一组线性无关的n维向量,证明:任一n维向量都可由它们线性表示.

证明:设a为任一n维向量.因为a1,a2,…,an,a是n+1个n维向量,所以a1,a2,…,an,a是线性相关的.又因为a1,a2,…,an线性无关,所以r(a1,a2,…,an,a)=r(a1,a

设A为n阶矩阵,a为n维列向量,若Aa≠0,但A²a=0,证明:向量组a,Aa线性无关

设k1a+k2Aa=0(*)等式两边左乘A得k1Aa+k2A^2a=0由A^2a=0知k1Aa=0再由Aa≠0知k1=0代入(*)式得k2Aa=0同理得k2=0.所以k1=k2=0所以向量组a,Aa线

设A为n阶正定矩阵,a1,a2.am为n维非零列向量,且ai^TAaj=0(i≠j),证明:a1,a2.am线性无关(大

设∑ki*ai=0(对i求和),则(∑ki*ai)^TAaj=0(j=1,2,...,m),即kj*(aj^TAaj)=0,(j=1,2,...,m);而A正定,所以aj^TAaj>0,从而kj=0(

设A,B分别为m×n,n×m矩阵,n>m,且AB=Em,证明B的m个列向量线性无关.

反证法就行了不妨设j,k列相关Bj=cBk则Ejj=cEjkEjj=1=>Ejk=1/c不等于0矛盾所以不存在j,k使线性相关

设A为n阶方阵,α1,α2,...,αn为线性无关的n个n维列向量.证明:R(A)=n﹤=﹥ Aα1,Aα2,...,A

因为(Aα1,Aα2,...,Aαn)=A(α1,α2,...,αn)当A可逆时,r(Aα1,Aα2,...,Aαn)=r(α1,α2,...,αn)=n.所以Aα1,Aα2,...,Aαn线性无关.

设向量组a1a2a3线性相关,a2a3a4线性无关,证明向量a1必可表示为a2,a3,a4的线性组合

证明:∵a1,a2,a3线性相关∴存在不全为0的数b1,b2,b3使b1a1+b2a2+b3a3=0又a2,a3,a4线性无关∴a2,a3线性无关∴若b1=0,则b2a2+b3a3=0∴b2=b3=0

设n维向量a1 a2线性无关a3 a4线性无关若a1 a2都分别与a3 a4正交 证明a1 a2,a3,a4线性无关

已知n维向量组A:a1,a2线性无关,b1,b2线性无关,且a1,a2分别与b1,b2正交,证明a1,a2,b1,b2线性无关设x1a1+x2a2+y1b1+y2b2=0,证明x1=x2=y1=y2=

设A和B分别是n×m型和m×n型矩阵,C=AB为可逆阵,证明:B的列向量线性无关

方程组Bx=0的解都是Cx=0的解,但是C可逆,所以Cx=0只有零解,所以Bx=0也只有零解,所以B的列向量线性无关

设a1,a2,a3...an为一组n维向量,证明这n个向量线性无关的充要条件是任一n...

必要条件:任意(n+1)个n维向量必线形相关即任意n维向量b都可以由a1,a2,a3...an线性表出.充分条件:显然

线性代数的题目设A为n×m矩阵,A的列向量组线性无关,证明存在列向量线性无关的矩阵B(下标n(n-m)

应该要让P可逆.设A为n×m矩阵,A的列向量组线性无关,证明存在列向量线性无关的矩阵B(下标n(n-m),使得P=(A,B)可逆,且B‘A=0.证明:考虑齐次线性方程组A'x=0,系数矩阵A'的秩是m

求证一个线性相关的定理 设向量组N是M的子集,若M线性无关,则N线性无关.这个怎么证明?

反证,若n线性相关,写出来,带入m,其他的为0,可得到m线性相关!

证明线性无关的题目.设a1,a2,a3...an为一组n维向量,已知n维单位向量e1,e2,e3.en 都可由其线性表示

证明:因为e1,e2,e3.en线性无关,且任一向量都可由n维基本向量组e1,e2,e3.en线性表示由已知,a1,a2,a3...an与e1,e2,e3.en等价.而等价的向量组秩相同所以r(a1,

设a1,a2,a3,b均为n维非零列向量,a1,a2,a3线性无关且b与a1,a2,a3分别正交,试证明a1,a2,a3

令kb+k1a1+k2a2+k3a3=0两边用b做内积,得k[b,b]+k1[b,a1]+k2[b,a2]+k3[b,a3]=0因为b与a1,a2,a3分别正交,故[b,a1]=[b,a2]=[b,a

设A为n×s矩阵,A的列向量组线性无关,证明存在列向量线性无关的B,使得P=(A,B)可逆,且

R(A^T)=sA^Tx=0的基础解系含n-s个向量,令其构成矩阵B则B为列向量线性无关的n行n-s列矩阵且有A^TB=0,即有B^TA=0由于B的列与A^T的行正交(齐次线性方程组的解与系数矩阵的行

设A B分别为m×n,n×m矩阵,n>m,AB=Em,证明B的m个列向量线性无关

证明:矩阵AB的秩为r(AB)=r(Em)=m,而r(AB)=m.----------(1)另外由题意,B为n×m矩阵,且n>m,则可知r(B)

设A为m×n矩阵,B为n×s矩阵,已知A的列向量组线性无关,证明:B与AB有相同的秩

考虑方程ABx=0,由于A的列向量线性无关,所以只可能是Bx=0.这说明ABx=0的解空间与Bx=0的解空间相同,其中ABx=0解空间的维度为s-r(AB),Bx=0解空间的维度是s-r(B).两个方