设均为维非零列向量,线性无关,且与分别正交,证明线性无关.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 11:18:02
⑴,行列式|123||3-14||011|≠0,线性无关.类似地,⑵=0,线性相关.⑶=0,线性相关.⑷,=0,线性相关
D是否有解无法判断A秩=4AB﹙即增广矩阵﹚秩可以是4﹙唯一一组解﹚或者5﹙无解﹚.再问:这个题答案选C再答:哦,是我没有看清楚题目,以为是另外一道题,http://zhidao.baidu.com/
证明:ki=0,i=1,2,……,r,时显然成立由a1,a2...ar线性相关,则存在不全为0的数ki使得k1a1+k2a2+...+krar=0成立,不妨设k1≠0,则a1=(-1/ki)(k2a2
设k1*(A1+A3)+k2*(A2+A3)+k3*A3=0整理得:k1*A1+k2*A2+(k1+k2+k3)*A3=0根据条件这三个向量组线性无关,那么k1,k2,k3的值可以解出都为0,得证,新
证明:∵a1,a2,a3线性相关∴存在不全为0的数b1,b2,b3使b1a1+b2a2+b3a3=0又a2,a3,a4线性无关∴a2,a3线性无关∴若b1=0,则b2a2+b3a3=0∴b2=b3=0
假设a1+a2+a3,a2+a3,a3线性相关,则k1(a1+a2+a3)+k2(a2+a3)+k3a3=0其中k1、k2、k3不全为0.化简成k1a1+(k1+k2)a2+(k1+k2+k3)a3=
证明:设k1(a1+a3)+k2(a2+a3)+k3a3=0得:k1a1+k2a2+(k1+k2+k3)a3=0由a1,a2,a3线性无关得k1=0,k2=0,k1+k2+k3=0所以有k1=k2=k
A不对!例如:a1=(1,0,0),a2=(0,1,0)b1=(0,2,0),b2=(0,0,1)两向量组都线性无关,但不等价,谁也不能表示谁B正确.因为A,B等价,即A可经初等变换化成B初等变换不改
A(a1,a2,a3)=(a1,a2,a3)KK=10201222-1所以|A||a1,a2,a3|=|a1,a2,a3||K|.由a1,a2,a3线性无关,所以|a1,a2,a3|≠0.所以|A|=
先证CX=0与AX=0同解.一方面,显然AX=0的解是CX=BAX=0的解.另一方面,设X1是CX=0的解,则CX1=0.所以(BA)X1=0所以B(AX1)=0因为B列满秩,所以有AX1=0.即X1
这是个常用结论:若C=AB,A列满秩,则R(C)=R(B)请参考:
正定的定义若X!=0则X'AX>0题目有误
C注:A可以线性相关,只要a1,a2线性无关就行Ba1a4线性相关跟这四个向量线性无关没关系D前后正负关系,肯定线性相关D注:秩为2所以A可以先向相关,跟a3线性相关都可以,只要跟a4别线性相关.B不
令kb+k1a1+k2a2+k3a3=0两边用b做内积,得k[b,b]+k1[b,a1]+k2[b,a2]+k3[b,a3]=0因为b与a1,a2,a3分别正交,故[b,a1]=[b,a2]=[b,a
这个常规做法是设这个向量组的一个线性组合等于0推出组合系数都等于0也可以这样(α,α+β,α+β+γ)=(α,β,γ)KK=111011001因为|K|=1,K可逆所以r(α,α+β,α+β+γ)=r
R(A^T)=sA^Tx=0的基础解系含n-s个向量,令其构成矩阵B则B为列向量线性无关的n行n-s列矩阵且有A^TB=0,即有B^TA=0由于B的列与A^T的行正交(齐次线性方程组的解与系数矩阵的行
一.因为这样运算能使它们的和为0,因而可以判断线性无关.如果能找到其他一组系数使它们的和为0也可以说明问题.二.这要靠自己的经验的,没有一定的规则的.三.这个书上有的,一组向量无关,就不存在一组系数不
四个向量都是三维列向量,所以四个向量组成的向量组a1,a2,a1,a2一定线性相关,所以存在不全为零的实数x1,x2,y1,y2,使得x1a1+x2a2-y1b1-y2b2=0,所以x1a1+x2a2
111 (a,a+b,a+b+r)=(a,b,r)011 001 后一矩正可逆,r(a,a+b,a+b+r)=r(a,b,r)=3 所以向量组a,a+b,a+b+r也线性无关
矩阵等价则矩阵的秩相同所以r(b1,...,bm)=r(B)=r(A)=r(a1,...,am)=m所以b1,...,bm线性无关