设均匀带电球面总电量为q 半径为R 求球内 外的场强和电势

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 11:04:04
设均匀带电球面总电量为q 半径为R 求球内 外的场强和电势
一半径为R的均匀带电球面,带电量为Q,若规定球面上电势值为零,则无线远处电势为多少?

答:均匀带电球面球外空间电场等效于点电荷在球心处产生的电场.取无限远为零势面,则φ=kQ/r,则r=R处电势为φ=kQ/R.若规定球面上电势值为零,由于球面与无限远的电势差不变,因此φ=-kQ/R,Q

一均匀带电半圆环,半径为R,电量为Q,求环心处的电势

如果就做这道题来说的话,图中的解法应该是做等效处理了,由于圆环的对称性,在电势上相当于带Q的点电荷在距离为R上的电势,图中的解法应该是解等效后的这样一个简单模型,楼主说的电势叠加是可以的.

求均匀带电球面内外场强及电势分布.带电量为Q,半径为R.如果是均匀带电球体呢?

带电量为Q,半径为R.均匀带电球面内外场强及电势分布内部场强E=0球外部等效成球心处一点电荷E=KQ/r^2r>R电势相等球外部等效成球心处一点电荷Φ=KQ/r如果是均匀带电球体,结果与球壳相同

半径为R的均匀带电球面,总电量为Q在球面上挖去小块的面积S(连同电荷)求球心处电场电场强度大小

当没有挖去小块的面积S时,球心处的电场强度为0(这一点可以用微元法证明),现挖去小块的面积S(可视为点电荷),挖去的电荷量为QS/(4πR²),在球心处产生的电场强度为kQS/(4πR^4)

半径为R的均匀带电球壳,电量为Q,试求球面内电场强度大小及球心处电势?

半径为R的均匀带电球壳,电量为Q,球面内电场强度大小为0,球心处电势为kQ/R

半径为r的均匀带电球面1,带电量为q,其外有一同心的半径为R的均匀带电球面2,带电量为Q,两球面的电势差

高斯定理知道吧,你在那两个带电球面之间任意取一个同心高斯球面,它包围的电荷只有q,这样由高斯定理即可知,那两个带电球面之间的电场只由q决定,而与Q无关,所以,两球面的电势差与Q无关.也可由积分运算证明

真空中有一均匀带电球面,球半径为r,总带电量为q,今在球面上挖出一很小面积ds,设其余部分的电荷仍均匀分布,则挖去以后球

ds面积上的电荷:q*ds/(4πr^2)所以电场强度大小为:E=[kq*ds/(4πr^2)]/r^2=kq*ds/(4πr^4)电场方向由圆心指向小面积ds.再问:你可能没理解意思问的是挖去了ds

真空中有一均匀带电球面,球半径为r,总带电量为q,今在球面上挖出一很小面积ds,设其真空中有一均匀带电球面,

正确的解法应该是完整均匀带电球面的电势(整个球体是等势的)减去ds上的电荷单独存在时在球心处产生的电势——kq/r-k[q(ds/πrr)]/r.你大概是没算kq/r而只算k[q(ds/πrr)]/r

2.如图所示,半径为R的均匀带电球面,总电荷为Q,设无穷远处的电势为零,则球内距离球心为r的P点处的电场强度的大小和电势

你好:答:均匀带电球面球外空间电场等效于点电荷在球心处产生的电场.取无限远为零势面,则φ=kQ/r,则r=R处电势为φ=kQ/R.其实如果要是你扩展一下,这个回答还是一样的,只不过是有正负电势的区别了

今有一半径为R,带电量为2q的均匀带电球面,其内部电势与球面上的电势_____(相等,不相等)

今有一半径为R,带电量为2q的均匀带电球面,其内部电势与球面上的电势___相等__,根据高斯定理可得球面内电场强度为零,所以球内为等势体,球面为等势面,且它们相等.

一均匀带电半圆环,半径为R,电量为Q,求环心处的电势.

从理论计算上来看,结合高斯定理,推导出的计算公式是:如图.(E.为真空电容率)(q其实就是Q)推导过程需要用到定积分理论.如果楼主还有问题的话,随时欢迎.希望对楼主有用~~~~~再问:可以写的在详细点

有均匀带电球体,半径为R,电量为q,求球内外场强

外面是均匀球壳便可以无视,所以内部就无视外侧的球壳,将内侧的球视为在圆心的点.在球外视为球心的点即可

半径为r电量为q均匀带电球面内某一点电势为___

整个球面以及内部空间是等势体,电势与一带电量为q的点电荷在距离为r的点产生的电势相等.U=q/(4πεr)具体来说,用积分做,电场强度E=q/(4πεr^2),球表面的电势为E从r到无穷远点对r的积分

求半径为R、电荷体密度为 、总电量为q的均匀带电球体的场强和电势分布.

这个题很简单啊,课本上应有推理过程.运用高斯定理,求解电场强度,然后再用积分求电势即可

半径为R的绝缘实心球体,非均匀带电,点荷密度为ρ=ρ.r .r为离球心距离.总电量Q

ρ只和r有关,电荷分布是球对称的,所发出的电场线也是球对称分布的射线.做一与带电球同心,半径为r(r>R)的高斯球面,设球面上各点场强大小为E,根据高斯定理:E*4πr²=Q/ε解出球外的场

真空中一半径为R的球面均匀带电Q,在球心O处有一带电量为q的点电荷,.设无穷远处为电势零点,则在球内离球心O距离为r的P

根据高斯定理,可得出电场分布E=q/4πεr²(rR)U=∫(q/4πεr²)dr+∫[﹙q+Q)/4πεr²]dr(两个积分区间分别为r—R和R—∞)最后即可求出U=1

求电势以及E的问题,真空中有一均匀带电球面,球半径为R总带电量为Q(Q>0),现在球面上挖去很小面积,其上电荷为dq,面

高斯定理指的是如果球面内电荷为0,这整个球面上的总电通量为0.如果球面外有一个点电荷,则球面的一侧有像内的通量,另一侧有向外的通量,二者抵消.但这并不意味着该处的电场为0所以把它当成点电荷计算是正确的

均匀带电圆环总电量Q 环半径b.

把环看成一个个质点,那么每个质点带电量为Q/(2πb)每个质点对于q的力是F=K[Q/(2πb)]q/(a^2+b^2)环上相对为180°的2个质点为一组(如最高点和最低点)他们对于q的力在竖直方向上

求均匀带电球壳的电势分布,已知内球面的半径为R1,电量为Q1,外球面的半径为R2,电量为Q2

如果不是非要列式计算的话,从理论上就可以分析出来静电屏蔽的定义就是,内部不影响外部,外部也不影响内部所以R1内部电势分布:只跟内球面有关系,外球面不产生影响,球壳内部任意一点电势为零(这是个结论吧~)