设均匀带电的薄球壳 内部等势
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 14:54:32
球心处电场强度为零
先做个假设,求一个引力问题:求一均匀球壳(密度p为常数)对不在该球壳上点M(质量为1)的引力.设球心在坐标原点,半径为R,质点位于正的z轴上,离球心的距离为.于是引力在x,y轴上的投影显然为零.对球面
“均匀带电球面内部电场为零”,这要由高斯定理来回答:电场线起于正电荷,终止于负电荷,如果球面带正电,由于球面内部不带电,而无穷远处电势为零,相当于存在负电荷,所以电场线射向无穷远处,不会存在于球面内部
均匀带电球壳内部电场相互抵消,就没有电场,根据电势的定义,单位电荷从无穷远处移动到指定点所用功为电势,则球壳内部电势与表面电势相同,动态的看就是在r小于R后电势便不再变化.对于实心球,分两种:1.金属
用电势叠加原理做,即将环看成是由很多个点电荷(取极短的一段)组成,每个点电荷在O点的电势的代数和等于所求结果.将环均匀分成n段(n很大),每段的带电量是q=a*2πR/n每段电荷在O点的电势都是 U=
ds面积上的电荷:q*ds/(4πr^2)所以电场强度大小为:E=[kq*ds/(4πr^2)]/r^2=kq*ds/(4πr^4)电场方向由圆心指向小面积ds.再问:你可能没理解意思问的是挖去了ds
你的理解是对的.如果题目是求均匀球体的场强分布,当球是导体且处于稳定状态时,净电荷必然只在外表面;当球是非导体时,这个就更好理解.
今有一半径为R,带电量为2q的均匀带电球面,其内部电势与球面上的电势___相等__,根据高斯定理可得球面内电场强度为零,所以球内为等势体,球面为等势面,且它们相等.
设均匀带电导体球外的电势为φ=KQ/R,其中K为未知的常数,待定.这个表达式如果满足唯一性原理的要求,求出的电场就是唯一的,【1】在导体外要满足泊松方程div(gradφ)=-ρ/ε,在此题中,导体外
你的问题有一点不太明确,就是圆柱体是否为无限长,因为如果是有限长均匀带电体的话,那么它周围一定空间范围内的电场分布一定是非集合简单化的,不好简单求解.而如果你只关心无穷接近带电体表面的电场强度的话,却
用高斯定理∫E·dS=q/ε建坐标,平板中心处x=0在内部做一个柱面,EΔS+EΔS=ρ*2*x*ΔS/ε,E=ρ*x/ε在外部做一个柱面,EΔS+EΔS=ρ*b*ΔS/ε,E=ρ*b/(2ε)
1、首先,x>0时,对E积分所得的电势是负的.2、dl的方向是有l的方向决定的,因为它是l向量的微量.3、当x向量为x正方向时,dx就为正的,x向量为负方向时,dx就为负的.所以,跟x有关.还因为x有
对.根据高斯定理E*2S=入*S/真空介质常量E=入/2*真空介质常量与距离无关的(仅限于无限大平面)相信我.希望能帮助你~!
肯定有啊,因为电场线穿过球内部啊再问:那如果一个有厚度的金属球壳带电,那内表面和外表面之间的金属部分有场强吗?再答:我觉得会有,金属带电是因为金属中含有自由电子,金属内部会分布着单个电子产生的电场线,
感觉你对面元的理解不够.你觉得面元上有很多点,从每个点到K点的连线的方向都不一样.事实确实是这样的,但是面元是面积趋于0的单元,前述的“不一样”在计算的时候是可以忽略的,也就说面元上任意一点到K点的距
无限长均匀带电圆柱面内外的电场强度分别为E=0,E=a/(2πεr)设有限远r0处的电势为零,则电圆柱面外部距轴线为r的任一点的电势为U=∫Edr(积分限r到r0)=a/(2πε)*ln(r0/r)圆
这个没错,不过你千万别把那个带电球面当成封闭曲面了,求外部场强时,需要在外部作一个大的球形封闭曲面,包围了所有的电荷.通过通量计算场强.
1.紧贴球壳内壁取高斯面(即与球壳内接的球面)因为高斯面内部没有电荷,所以通过高斯面的电通量总和为零,即有多少D线进入,就要有多少D线穿出.假设有D线进入高斯面,则它们就要从高斯面的其他地方穿出,也就
一个均匀带电球体的电场相当于把电荷集中在中心的点电荷产生电场一个均匀带电球体外包围一个的带电球壳.因为球对称性,直接对空隙用高斯定理,在空隙里的电场就是把内部球的电荷集中在中心的点电荷产生电场,在球壳