设总体X~B(1,p),X1,X2,...Xn为来自总体X的样本,求总体均值μ及

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 06:59:43
设总体X~B(1,p),X1,X2,...Xn为来自总体X的样本,求总体均值μ及
概率论与数理统计 设X1,X2,……,Xn是取自总体X~B(m,p)的一个样本,其中m已知,求p的矩估计量

EX=mp=(x1+x2+...+xn)/n所以p的矩估计量为(x1+x2+...+xn)/(mn)而E[(x1+x2+...+xn)/(mn)]=(E(x1)+E(x2)+...+E(xn))/(m

设X~ε(λ),X1,X2,……是来自总体X的随机变量,和总体X独立的随机变量N服从均值为1/P的几何分布,求Y=(X1

这题就是把N从常量整数变成变量,如果是常量整数,Y服从正态分布,变成变量整数其实也服从正态分布,但此时E(Y)跟D(Y)就变了.但是也很好求,只是比较麻烦.E(X)=λ,D(X)=ε平方,E(N)=1

设X1,X2,…Xn是来自二项分布总体B(n,p)的简单随机样本,.X

因为.X与S2分别为总体均值与方差的无偏估计,且二项分布的期望为np,方差为np(1-p),故E(.X)=np,E(S2)=np(1-p).从而,由期望的性质可得,E(T)=E(.X)-E(S2)=n

一道大学概率论问题设总体X服从参数为m,p的二项分布,m已知,p未知,(x1,.Xn)是来自总体X的一个简单随机样本,求

该样本遵从二项分布,则可先写出其分布律,然后将n个这样分布律联乘,之后这个连乘的函数取对数,再对取完对数后得到的函数对变量p求导,并令其等于零,得到的p就是其最大似然估计量,如果取完对数后得到的函数对

总体X服从参数为P的0-1分布,(X1,X2,……,Xn)是取自X的样本 可以判断(X1,X2,……,Xn)~b(n,

(X1,…,Xn)是个随机向量,B(n,p)是一个随机变量的分布,二者维数不同.应该是X=X1+…+Xn~B(n,p)就对了,前提是诸Xi彼此独立.可以直接求X的分布列验证.

概率论的一个题目设总体X服从(0-1)分布,X1,X2,……,Xn为X的一个样本,求p的极大似然估计.

设总体X服从(0-1)分布,P(X=1)=p,P(X=0)=1-p.似然函数L(p)=p^x1(1-p)^(1-x1)*...*p^xn(1-p)^(1-xn)=p^(x1+...+xn)*(1-p)

总体X~B(n,p),X1,X2,…,Xn为其样本,求n及p的矩估计量

用样本算出均值与方差,另一方面,其均值与方差分别为np,np(1-p),即可算出

一道概率论题目设总体X服从(0,θ)上的均匀分布,从X中抽取容量为1的样本X1,则θ的无偏估计量是()A.U=X1,B.

注意EX1=EX=(0+θ)/2=θ/2(均匀分布的数字特征),所以有E(2X1)=θ,故选B

设总体X~N(0,σ^2),X1、X2为X的样本,求证(X1+X2)^2/(X1-X2)^2服从分布F(1,1)

N(0,σ^2)E(X1+X2)=EX1+EX2=0D(X1+X2)=DX1+DX2=2σ^2X1+X2~N(0,2σ^2)同理:X1-X2~N(0,2σ^2)所以1/√2σ(X1+X2)~N(0,1

设总体X~P(λ),则来自总体X的样本X1,X2.Xn的样本概率分布为

样本与总体同分步,也是P(λ),这是数理统计的规定.希望可以帮到你,如果解决了问题,请点下面的"选为满意回答"按钮,

概率与统计设总体X为指数分布列P(x=k)=p(1-p)^(k-1) ,其中p为未知数,x1,x2,...xn为取自总体

你这个分布不是指数分布,是几何分布EX=1/p即p=1/EX所以X一把是对EX的矩估计p_hat=1/X一把

设总体X~N(12,4),x1,x2,x3……x16为样本,X头上一横为样本均值,计算P{丨样本均值-12丨>1}

4是方差?x1+..x16~N(12*16,4*16)均值-12=(x1+..x16-12*16)/16P(|均值-12|>1)=P(|x1+..x16-12*16|>16)即求16个样本和的分布同其

设总体X~N(0,σ^2),参数σ>0未知,X1,X2,…Xn是取自总体X的简单随机样本(n>1)

(X1,…,Xn)是个随机向量,B(n,p)是一个随机变量的分布,二者维数不同.应该是X=X1…Xn~B(n,p)就对了,前提是诸Xi彼此独立.可以直接求X的

设X1,X2,…Xn为总体X~U[a,b]的样本,试求:X(1)的密度函数;X(n)的密度函数.

已知是均匀分布,立刻能写出每一个Xi的密度函数都是f(x)=1/(b-a)a<Xi<b那么它们的分布函数也能写出:当Xi<a时,F(x)=0当a<Xi<b时,F(x)=∫f(t)dt=(x-a)/(b