设总体x~n是其一个样本试决定常数c

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 00:53:16
设总体x~n是其一个样本试决定常数c
设X1,X2,…Xn是来自二项分布总体B(n,p)的简单随机样本,.X

因为.X与S2分别为总体均值与方差的无偏估计,且二项分布的期望为np,方差为np(1-p),故E(.X)=np,E(S2)=np(1-p).从而,由期望的性质可得,E(T)=E(.X)-E(S2)=n

设X1,X2,……Xn是总体X的样本,总体方差存在,X拔是样本均值,求X1与X拔的相关系数

给你点提示,你就能做出来了,D(X1+X拔)=D(X1)+D(X拔)+2Cov(X1,X拔)式中,D(X1+X拔)=D[(1+1/n)X1+1/n(X2+X3+……Xn)]=(1+1/n)^2D(X1

设(X1,X2,...,Xn)为总体X~N(0,1)的一个样本,X拔为样本均值,S^2为样本方差,则有( )

选DX拔=0,所以A、B错C由单正态总体的抽样分布定理得X拔/(S/根号n)~t(n-1),C错D中把n-1移到分母里面,得到分子是自由度为1的卡方分布,分母是自由度为n-1的卡方分布,满足F分布的定

设总体x的分布函数为f(x),概率密度函数为f(x),(x1,x2…xn)是来自总体x的一个样本,x(1)和x(n)分别

X(1)f1(x)=n*(F(x))^(n-1)*f(x)F1(x)=(F(x))^nX(n)fn(x)=n*(1-F(x))^(n-1)*f(x)Fn(x)=(1-F(x))^n其中f(x)F(x)

设X1,X2,...Xn是来自正态总体X~N(μ,σ^2)的简单随机样本

因为是简单随机样本,所以各样本间相互独立,那么就有:E(X1+X2+……+Xn)=E(X1)+E(X2)+……+E(Xn)=μ+μ+……+μ=nμD(X1+X2+……+Xn)=D(X1)+D(X2)+

设总体X,X1,X2...Xn是取自总体X的一个样本,A为样本均值,则不是总体期望μ的无偏估计的是?

选B,因为他的期望不是是uE(A)=uE(X1+X2+X3)=E(X1)+E(X2)+E(X3)=3uE(0.2X1+0.3X2+0.5X3)=0.2E(X1)+0.3E(X2)+0.5E(X3)=u

为何样本方差和总体方差的算法不一样,总体方差的自由度为总体个数n,而样本方差的自由度则是抽取的样本个

简单地可以这样理解,样本有n个,但是你求方差时用到样本均值x0=1/nΣxi,这个实际上是这n个样本的线性组合,所以算样本离差(注意是离差)时Σ(xi-x0)^2.均值会使得这n个独立变量消去了一个自

设总体X服从正态分布X~N(μ,σ^2),X1,X2,...,Xn为来自该总体的一个样本,

U=n^(1/2)*(xˉ-μ)/σ服从标准正态分布,即UN(0,1),因此,D(U)=1.

设总体X服从正态分布X~N(μ,σ^2),X1,X2,...,Xn为来自该总体的一个样本,则样本均值是

样本均值?那不直接是(X1+.+Xn)/n不过应该不是问这个吧可以说详细点?再问:是等于N(μ,σ^2)吗再答:有完整的题目么?这个X~N(μ,σ^2)意思是总体X服从总体均值为μ,总体标准差为σ的正

设总体X服从正态N(μ,σ²),x1,x2,xn为其总体的样本,求该样本的联合概率密度

fX(x)=φ((x-u)/σ)/σf(X1,X2,...Xn)=fX1(x1)fX2(x2)..fXn(xn)=(1/√(2π)σ)^n*e^Σ(xi-u)²/(2σ)如有意见,欢迎讨论,

设总体X~N(0.1) X1,X2,.Xn 为简单随机样本,试问该统计量是服从什么分布:{ [ (n/3)-1]* ∑'

首先要有卡方分布(χ2(n)分布)和F分布的基础.如果不知道这两个,需要先翻书复习.根据卡方分布定义,∑''3,i=1''Xi²满足自由度为3的卡方分布∑''n,i=4''Xi²满

设总体X服从正态分布N(u,σ^2) ,X1,X2,X3,...,Xn 是它的一个样本,则样本均值A的方差是 ? (需要

正态分布的规律,均值X服从N(u,(σ^2)/n)因为X1,X2,X3,...,Xn都服从N(u,σ^2),正太分布可加性X1+X2...Xn服从N(nu,nσ^2).均值X=(X1+X2...Xn)

设总体X~N(μ,σ^2),已知样本容量n=24,样本方差s^2=12.5227,求总体标准差σ大于3的概率.

设X服从标准正态分布,其分布函数为Φ(x),由于要:其密度函数是偶函数,故有:Φ(-a)=1-Φ(a).故a>=0时有:则P{|X|

设总体X~N(12,4),x1,x2,x3……x16为样本,X头上一横为样本均值,计算P{丨样本均值-12丨>1}

4是方差?x1+..x16~N(12*16,4*16)均值-12=(x1+..x16-12*16)/16P(|均值-12|>1)=P(|x1+..x16-12*16|>16)即求16个样本和的分布同其

设总体X~N(μ,16),X1,X2,...X9是来自该总体的一个样本,求样本方差介于6~14之间的概率

样本方差Sn运用定理(n-1)Sn^2/σ^2服从自由度为(n-1)的χ方分布代入数据(9-1)*6/16=3(9-1)*14/16=7查表+线性插入计算得P(χ^2(8)>3)=0.932P(χ^2

设总体X~N(0,σ^2),参数σ>0未知,X1,X2,…Xn是取自总体X的简单随机样本(n>1)

(X1,…,Xn)是个随机向量,B(n,p)是一个随机变量的分布,二者维数不同.应该是X=X1…Xn~B(n,p)就对了,前提是诸Xi彼此独立.可以直接求X的

设X1,X2,…Xn为总体X~U[a,b]的样本,试求:X(1)的密度函数;X(n)的密度函数.

已知是均匀分布,立刻能写出每一个Xi的密度函数都是f(x)=1/(b-a)a<Xi<b那么它们的分布函数也能写出:当Xi<a时,F(x)=0当a<Xi<b时,F(x)=∫f(t)dt=(x-a)/(b