设总体x~p(λ)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 06:03:52
设总体x~p(λ)
设X~ε(λ),X1,X2,……是来自总体X的随机变量,和总体X独立的随机变量N服从均值为1/P的几何分布,求Y=(X1

这题就是把N从常量整数变成变量,如果是常量整数,Y服从正态分布,变成变量整数其实也服从正态分布,但此时E(Y)跟D(Y)就变了.但是也很好求,只是比较麻烦.E(X)=λ,D(X)=ε平方,E(N)=1

设X1,X2,…Xn是来自二项分布总体B(n,p)的简单随机样本,.X

因为.X与S2分别为总体均值与方差的无偏估计,且二项分布的期望为np,方差为np(1-p),故E(.X)=np,E(S2)=np(1-p).从而,由期望的性质可得,E(T)=E(.X)-E(S2)=n

设X1 X2 ...Xn为来自总体X的样本,总体X服从参数为λ的指数分布,即X~f(x,λ)=λexp(-λx) 求X(

xi独立同分布F1x=MAX(x1,x2,.)=(f(x,λ))^n,然后根据期望的定义求相应的积分就是了,但是要注意指数分布当x《0时f=0

设总体X服从泊松分布 P(λ),X1,X2,…,Xn为取自X的一组简单随机样本,求λ的极大似然估计

x的平均值这个打不出来啊,大概思想是求出似然函数,就是n个泊松概率函数求积,然后取对数,就是ln(n个泊松概率函数求积),之后对λ求导,让得出来的式子等于零.再问:过程!!结果我知道

一道大学概率论问题设总体X服从参数为m,p的二项分布,m已知,p未知,(x1,.Xn)是来自总体X的一个简单随机样本,求

该样本遵从二项分布,则可先写出其分布律,然后将n个这样分布律联乘,之后这个连乘的函数取对数,再对取完对数后得到的函数对变量p求导,并令其等于零,得到的p就是其最大似然估计量,如果取完对数后得到的函数对

设X1X2…Xn为总体X~B(10,P)的样本,则EX拔=( ) DX拔=( ) ES平方=()

B(10,p),则E(X)=10p,D(X)=10p(1-p)E(X拔)=E(1/n*(X1+X2+^+Xn))=1/n*[E(X1)+E(X2)+^+E(Xn)]=1/10*10*E(X)=10pD

设总体X-N(40,5的平方) (1)抽取容量n=36的样本,求P(38≤X≤43)

P(38≤X≤43)=P(X≤43)-P(X≤38)=P(Y≤(43-40)/5)-P(Y≤(38-40)/5)=Φ(0.6)-Φ(-0.4)=Φ(0.6)-1+Φ(0.4)Φ(0.6)和Φ(0.4)

设X~π(λ),其中λ>0为未知,X1,X2,……Xn为来自总体的一个样本,求概率p=P{X=0}的

用最大似然估计法估计出λ,或用矩估计法来估计可得λ估计量=X拔=(X1+X2+…+Xn)/n最大似然估计法L(λ)=∏【i从1到n】λ^xi*e^(-λ)/xi!lnL(λ)=(x1+x2+…+xn)

设总体X~P(λ),则来自总体X的样本X1,X2.Xn的样本概率分布为

样本与总体同分步,也是P(λ),这是数理统计的规定.希望可以帮到你,如果解决了问题,请点下面的"选为满意回答"按钮,

设总体x服从二项分布B(N,P),其中N已知,试求参数p的矩估计量和极大似然估计量

E[X]=NP;Var[X]=NP(1-P);矩估计:总体的一阶原点矩为E[X]=NP;样本的一阶原点矩为_X,用样本估计总体,有^p=_X/N;极大似然估计:^p=_X/N;

概率与统计设总体X为指数分布列P(x=k)=p(1-p)^(k-1) ,其中p为未知数,x1,x2,...xn为取自总体

你这个分布不是指数分布,是几何分布EX=1/p即p=1/EX所以X一把是对EX的矩估计p_hat=1/X一把

设总体X~N(12,4),x1,x2,x3……x16为样本,X头上一横为样本均值,计算P{丨样本均值-12丨>1}

4是方差?x1+..x16~N(12*16,4*16)均值-12=(x1+..x16-12*16)/16P(|均值-12|>1)=P(|x1+..x16-12*16|>16)即求16个样本和的分布同其

设P{X=

楼上们的回答不给力啊!看我的!由p{x1}且P{y>1}=1/3,所以则P{min{X,Y}=

设从总体X~N(u,o^2)中抽取容量为18的样本,u,o^2未知,求P(S^2/o^2

s^2是修正样本方差,那么17*s^2/σ^2符合卡方(17)分布,p(s^2/a^217*1.2052)=1-p(17*s^2/σ^2>20.4884),查表,=1-X^2(17),上分位点α=0.