设总体x~p(λ)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 06:03:52
这题就是把N从常量整数变成变量,如果是常量整数,Y服从正态分布,变成变量整数其实也服从正态分布,但此时E(Y)跟D(Y)就变了.但是也很好求,只是比较麻烦.E(X)=λ,D(X)=ε平方,E(N)=1
因为.X与S2分别为总体均值与方差的无偏估计,且二项分布的期望为np,方差为np(1-p),故E(.X)=np,E(S2)=np(1-p).从而,由期望的性质可得,E(T)=E(.X)-E(S2)=n
xi独立同分布F1x=MAX(x1,x2,.)=(f(x,λ))^n,然后根据期望的定义求相应的积分就是了,但是要注意指数分布当x《0时f=0
x的平均值这个打不出来啊,大概思想是求出似然函数,就是n个泊松概率函数求积,然后取对数,就是ln(n个泊松概率函数求积),之后对λ求导,让得出来的式子等于零.再问:过程!!结果我知道
该样本遵从二项分布,则可先写出其分布律,然后将n个这样分布律联乘,之后这个连乘的函数取对数,再对取完对数后得到的函数对变量p求导,并令其等于零,得到的p就是其最大似然估计量,如果取完对数后得到的函数对
B(10,p),则E(X)=10p,D(X)=10p(1-p)E(X拔)=E(1/n*(X1+X2+^+Xn))=1/n*[E(X1)+E(X2)+^+E(Xn)]=1/10*10*E(X)=10pD
P(38≤X≤43)=P(X≤43)-P(X≤38)=P(Y≤(43-40)/5)-P(Y≤(38-40)/5)=Φ(0.6)-Φ(-0.4)=Φ(0.6)-1+Φ(0.4)Φ(0.6)和Φ(0.4)
用最大似然估计法估计出λ,或用矩估计法来估计可得λ估计量=X拔=(X1+X2+…+Xn)/n最大似然估计法L(λ)=∏【i从1到n】λ^xi*e^(-λ)/xi!lnL(λ)=(x1+x2+…+xn)
P{min{X1,X2,X3,X4,X5}
样本与总体同分步,也是P(λ),这是数理统计的规定.希望可以帮到你,如果解决了问题,请点下面的"选为满意回答"按钮,
E[X]=NP;Var[X]=NP(1-P);矩估计:总体的一阶原点矩为E[X]=NP;样本的一阶原点矩为_X,用样本估计总体,有^p=_X/N;极大似然估计:^p=_X/N;
你这个分布不是指数分布,是几何分布EX=1/p即p=1/EX所以X一把是对EX的矩估计p_hat=1/X一把
4是方差?x1+..x16~N(12*16,4*16)均值-12=(x1+..x16-12*16)/16P(|均值-12|>1)=P(|x1+..x16-12*16|>16)即求16个样本和的分布同其
楼上们的回答不给力啊!看我的!由p{x1}且P{y>1}=1/3,所以则P{min{X,Y}=
s^2是修正样本方差,那么17*s^2/σ^2符合卡方(17)分布,p(s^2/a^217*1.2052)=1-p(17*s^2/σ^2>20.4884),查表,=1-X^2(17),上分位点α=0.
先把区间(140