设总体X服从f(x),求参数的最大似然估计量
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 05:26:29
X^2服从参数为λ的指数分布所以P{X^2>x^2}=e^(-λx^2)当xx^2}=(1/2)e^(-λx^2)所以f(x)=dF(x)/dx=-λxe^(-λx^2)又因为f(x)是偶函数所以x>
/>矩法估计思路大概就是先找出参数与期望之间的关系,然后用样本矩(样本平均数)代替期望,对参数进行估计.具体步骤如下:所以参数的估计值是样本平均数的三倍.如果还有问题再问我吧.
由于相互独立,EXY=EX*EY=1*2=2泊松分布的期望等于纳姆达=1二项分布的期望等于np=4*0.5=2
xi独立同分布F1x=MAX(x1,x2,.)=(f(x,λ))^n,然后根据期望的定义求相应的积分就是了,但是要注意指数分布当x《0时f=0
X服从参数为λ的泊松分布,EX=λ.把EX换成一阶样本矩Xˉ,即得矩估计量为λ^=Xˉ.
E(X^2)=E(X^2-X+X)=E[X(X-1)+X]=E[X(X-1)]+E(X)=∑(k=0→∞)k(k-1)T^ke^(-T)/k!+∑(k=0→∞)kT^ke^(-T)/k!=∑(k=2→
参数为1,就是λ为1
X的概率密度函数:fX(x)={e^-x,x>0{0,x0时,有FY(y)=P{X^2≤y}=P{-√y≤x≤√y}=∫(-√y→√y)fX(x)dxfY(y)=d[FY(y)]/dy=d[∫(-√y
概率论我已经忘光光了……
该样本遵从二项分布,则可先写出其分布律,然后将n个这样分布律联乘,之后这个连乘的函数取对数,再对取完对数后得到的函数对变量p求导,并令其等于零,得到的p就是其最大似然估计量,如果取完对数后得到的函数对
首先写出似然函数LL=∏p(xi)=∏{[(λ^xi)/(xi!)]·e^(-λ)}=e^(-nλ)·∏{[(λ^xi)/(xi!)]=e^(-nλ)·λ^(∑xi)·∏1/(xi!)然后对似然函数取
大数定律:一组相互独立且具有有限期望与方差的随机变量X1,X2,…,Xn,当方差一致有界时,其算术平均值依概率收敛于其数学期望的算术平均值.这里X21,X22,…,X2n满足大数定律的条件,且EX2i
求证什么?看不懂你的意思 你把题目打清楚点,我看看 就算这个统计量的方差是否是λ这里有
这个题目没错F(3,4)=P{X≤3,Y≤4}=P{X≤3,X^2≤4}=P{-2≤X≤2}直接求结果,不要先求分布函数,那样很麻烦的
(1).f(x)=3e^(-3x),x>0;f(x)=0,其他.y1时,FY(y)=P(Y
E[X]=NP;Var[X]=NP(1-P);矩估计:总体的一阶原点矩为E[X]=NP;样本的一阶原点矩为_X,用样本估计总体,有^p=_X/N;极大似然估计:^p=_X/N;