设总体X服从P泊松分布求参数极大似然估计量

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 15:07:27
设总体X服从P泊松分布求参数极大似然估计量
设随机变量X服从参数为λ的泊松分布,且P{X=1}=P{X=2},求数学期望和方差

泊松分布P{X=k}=(λ^k)·e^(-λ)/k!P{X=1}=λ·e^(-λ)P{X=2}=λ²·e^(-λ)/2因为P{X=1}=P{X=2}所以λ·e^(-λ)=λ²·e^

概率论:设随机变量X服从参数为5泊松分布,求P{X=10}为什么让P{X=10}=P{X大于=10}-P{X大于=11}

因P{X大于=10}=P10+P11+P12+.P{X大于=11}=P11+P12+.故P{X大于=10}-P{X大于=11}=(P10+P11+P12+.)-(P11+P12+.)=P10

设X服从参数为1的泊松分布,Y服从参数为4,0.5的二项分布,且x,y相互独立,求E(XY)

由于相互独立,EXY=EX*EY=1*2=2泊松分布的期望等于纳姆达=1二项分布的期望等于np=4*0.5=2

设总体X服从参数为λ的泊松分布,其中λ为未知参数.X1,X2,...,Xn为来自该总体的一个样本,则参数λ的矩估计量为?

X服从参数为λ的泊松分布,EX=λ.把EX换成一阶样本矩Xˉ,即得矩估计量为λ^=Xˉ.

设随机变量X,服从参数T,T>0的泊松分布,求E(X平方)

E(X^2)=E(X^2-X+X)=E[X(X-1)+X]=E[X(X-1)]+E(X)=∑(k=0→∞)k(k-1)T^ke^(-T)/k!+∑(k=0→∞)kT^ke^(-T)/k!=∑(k=2→

设随机变量X服从参数λ的泊松分布,且P{X=0}=1/2,求P{X>1﹜

F(x)=λ^ke^(-λ)/k!由P{X=0}=1/2得e^(-λ)=1/2λ=ln2则F(x)=(ln2)^k/2(k!)P{X>1}=1-P{X

设随机变量X服从参数为λ的泊松分布,且P{X=1}=P{X=2},则P{X>2}的值为

P{X=1}=λ*e^(-λ)P{X=2}=0.5*(λ^2)*e^(-λ)所以λ*e^(-λ)=0.5*(λ^2)*e^(-λ)整理λ=0或λ=2λ≠0,所以λ=2P{X=0}=e^(-2)P{X=

设随机变量X服从参数为λ的泊松分布,且已知P{X=1}=P{X=2},求P{X=4}.

P{X=1}=P{X=2},λ*e^-λ=λ^2*e^-λ/2λ=λ^2/2λ=2P{X=4}=2^4*e^-2/4!=2e^-2/3

概率论大数定理设总体X服从参数为2的泊松分布、X1,X2`````Xn为来自总体X的一个样本,则当n→∞,Yn=1/n(

Yn的极限应该是6吧.这里的Yn其实就是样本的二阶原点矩,记为A2.其一阶原点矩为1/n(X1+X2+……+Xn),记为A1.其二阶中心矩记为S^2.它们之间的关系为A2-A1^2=S^2.又因为X服

泊松分布:设随机变量X服从参数为5泊松分布,求P{X=10}为什么让P{X=10}=P{X大于=10}-P{X大于=11

因P{X大于=10}=P10+P11+P12+.P{X大于=11}=P11+P12+.故P{X大于=10}-P{X大于=11}=(P10+P11+P12+.)-(P11+P12+.)=P10

设总体X服从参数为λ的普阿松分布(泊松分布),它的分布律为:

首先写出似然函数LL=∏p(xi)=∏{[(λ^xi)/(xi!)]·e^(-λ)}=e^(-nλ)·∏{[(λ^xi)/(xi!)]=e^(-nλ)·λ^(∑xi)·∏1/(xi!)然后对似然函数取

设总体X服从参数为λ的泊松分布,X1.Xn是X的简单随机样本.求证:1/2(x的平均

求证什么?看不懂你的意思 你把题目打清楚点,我看看 就算这个统计量的方差是否是λ这里有

设随机变量X服从参数为λ的泊松分布,且p{X=1}=p{X=2},则EX=?DX=?

有些符号不会打.但有这样的结论:泊松分布的数学期望与方差相等,都等于参数λ.因为泊松分布只含有一个参数,只要知道它的数学期望或者方差就能完全确定它的分布

设随机变量X服从参数为1的泊松分布,则P{X=EX2}=______.

由于随机变量X服从参数为1的泊松分布,所以:E(X)=D(X)=1又因为:DX=EX2-(EX)2,所以:EX2=2,X 服从参数为1的泊松分布,所以:P{X=2}=12e−1,故答案为:1

设X服从参数为1的泊松分布,则P(X>1)

楼上的答案似乎不对P(X>1)=1-P(X=1)-P(X=0)=1-e^(-1)-e^(-1)-=1-2/e=0.26424

设随机变量X服从参数为λ的泊松分布,且P{X=1}=P{X=2},则EX=? DX=?

随机变量X服从参数为λ的泊松分布P{X=k}=e^(-λ)*λ^k/k!P{X=1}=e^(-λ)*λ^1/1!P{X=2}=e^(-λ)*λ^2/2!若P{X=1}=P{X=2}λ=2E(x)=D(