设总体X服从参数 的指数分布,求样本均值与样本方差的均值
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 17:19:38
随机变量X服从参数为2的指数分布EX=1/2DX=1/4EX²=(EX)²+DX=1/2EY=1/4E(2X²+3Y)=2*(1/2)+3*(1/4)=7/4
密度函数f(x)=1,0
对参数为入1,入2的两个指数分布X1,X2P(X1>X2)=入1/(入1+入2)1/(1+1)=1/2E(a),E(b)为例P(X>Y)∫(0~)∫(0~y)abe^(-ax-by)dxdy=∫(0~
xi独立同分布F1x=MAX(x1,x2,.)=(f(x,λ))^n,然后根据期望的定义求相应的积分就是了,但是要注意指数分布当x《0时f=0
先令Y=lnXF(y)=P{Y≤y}=P{lnX≤y}=P{X≤e^y}=Fx(e^y)=1-e^(-e^(y+1))此为Y的分布函数f(y)=F`(y)=e^(y+1-e^(y+1))你确定参数是e
参数为1,就是λ为1
X的概率密度函数:fX(x)={e^-x,x>0{0,x0时,有FY(y)=P{X^2≤y}=P{-√y≤x≤√y}=∫(-√y→√y)fX(x)dxfY(y)=d[FY(y)]/dy=d[∫(-√y
X服从参数λ为的指数分布,则:EX=1/λ,X有分布函数:F(x)=1-e^(-λx),x>=0;于是P(X>EX)=1-P(X
经济数学团队帮你解答,有不清楚请追问.请及时评价.
大数定律:一组相互独立且具有有限期望与方差的随机变量X1,X2,…,Xn,当方差一致有界时,其算术平均值依概率收敛于其数学期望的算术平均值.这里X21,X22,…,X2n满足大数定律的条件,且EX2i
X的分布函数:F_X(x)={1-e^-λx,x>0{0,x
由题设,X服从参数为λ的指数分布,知:DX=1λ2,λ>0,于是:P{X>DX}=P{X>1λ}=∫+∞1λλe−λxdx=−e−λx| +∞1λ=1e.
(1).f(x)=3e^(-3x),x>0;f(x)=0,其他.y1时,FY(y)=P(Y
设u=x+y,v=x/(x+y),算u,v的联合分布之后再求边际分布.
P(Y=0)=P(X>1)=e^(-1)P(Y=1)=P(X
x再问:跟[X](X取整)没有关系吗?你的解答没有体现取整再答:x
pdf(概率密度)fx=exp(-x)cdf(累计概率)Fx=1-exp(-x)那么x2的概率=exp(-2),反正是连续函数,等号无所谓E[Y]=p(x2)]=2-2exp(-2)+E[X(>2)]