设总体X服从均匀分布,令θ=C*max无偏估计
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 22:51:06
不对的地方多多指教再问:第一步不太明白诶!再答:f(x)么?这是均匀分布的公式啊
均匀分布的期望方差公式都记得吧,套用一下就行了EX=1/2EY=3X与Y相互独立所以EXY=EXEY=3/2E(XY)²=∫(0到1)dx∫(2到4)1/2x²y²dy=28/
Fy(y)=P{Y≤y}=P{X^2≤y}当y
既然是均匀分布,可以利用几何概型的方法所以,所求的概率为:P(x>2)=(4-2)/(4-1)=2/3再问:麻烦看下私信,谢谢!再答:哦,好的。
f(x)=1/3-2
XU(0,1)密度函数:等于:1当0再问:这是标准答案了吧?再答:按公式计算而得:若x的概率密度函数为f(x),那么随机变量x的函数g(x)的数学期望和方差分别为:E[g(x)]=∫g(x)f(x)d
随机变量X,Y(不独立也行),则E(X+Y)=E(X)+E(Y)随机变量X,区间【a,b】上的均匀分布,则E(X)=(a+b)/2E(X+Y)=E(X)+E(Y)=1/2+1/2=1
楼上方差错了方差(x*(e^x-1)^2在(0,1)上的积分)
本均值的方差=D(X)/10=1.2
EX=3DX=3EY=5DY=2.5EZ=-7DZ=13
U=n^(1/2)*(xˉ-μ)/σ~N(0,1),D(U)=1.
可以计算出D的面积为1/2所以(X,Y)的密度函数为f(x,y)=2(x,y)∈D而P(X+Y=y.0
注意EX1=EX=(0+θ)/2=θ/2(均匀分布的数字特征),所以有E(2X1)=θ,故选B
设X1X2...Xn为来自总体X的样本,总体X服从参数为λ的指数分布,即f(x,λ)=λexp(-λx)求X(1)和X(n)_百度知道设X1X2...Xn为来自总体X的样本,总体X服从参数为λ的指数分
在这里D={(x,y)|0
y=1的概率是2/3y=0的概率是0y=-1的概率是1/3EY=1*2/3-1*1/3=1/3E(Y^2)=1方差D(Y)=E(Y^2)-(EY)^2=1-1/9=8/9
FY(y)=P{Y小于等于y}=P{e*X小于等于y}=P{X小于等于lny}=FX(lny)fY(y)=fX(lny)(1/y)所以当0
DX拔=DX/n=(b-a)^2/12n再问:为什么分母有一个n呢再答:DX拔=DX/n样本均值的期望=总体的期望样本均值的方差=n分之总体方差