设总体x服从正态分布,求总体样本平均值的期望

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 18:22:40
设总体x服从正态分布,求总体样本平均值的期望
以Φ(x)表示标准正态总体在区间(-∞,x)内取值的概率,设随机变量ξ服从标准正态分布N(0,1),已知Φ(-1.96)

解法一:∵ξ~N(0,1)∴P(|ξ|<1.96)=P(-1.96<ξ<1.96)=Φ(1.96)-Φ(-1.96)=1-2Φ(-1.96)=0.948解法二:因为曲线的对称轴是直线x=0,所以由图知

一道概率题设总体分布X服从正态分布N(10,3²),X1,X2.,X6是它的一组样本,(x一横)是平均值,求(

x一~(10,3²/6)P(x一>11)=P((x一-10)/根号下1.5>(11-10)/根号下1.5)=1-标准正太(1/根号下1.5)计算查表得出结果

设X1 X2 ...Xn为来自总体X的样本,总体X服从参数为λ的指数分布,即X~f(x,λ)=λexp(-λx) 求X(

xi独立同分布F1x=MAX(x1,x2,.)=(f(x,λ))^n,然后根据期望的定义求相应的积分就是了,但是要注意指数分布当x《0时f=0

总体服从正态分布,其样本方差与样本均值独立吗?还是需要总体服从标准正态分布

不需要,谁和说总体服从正态分布时,样本方差和样本均值独立了啊?

已知总体Y服从正态分布N(u,1),且Y=lnX,求X的期望E(X)

E(X)=∫(-∞,∞)e^y*(1/2π)^(1/2)*e^((y-u)/2)^2dy=e^(1/2+u)

总体服从正态分布 为什么样本均值服从正态分布?出自哪里?

这个是统计学中的一个基本定理,与“大数定律及中心极限定律”无关,是正态分布的性质.可以看关于统计学中关于“抽样分布定理”的内容.

设总体X服从正态分布X~N(μ,σ^2),X1,X2,...,Xn为来自该总体的一个样本,

U=n^(1/2)*(xˉ-μ)/σ服从标准正态分布,即UN(0,1),因此,D(U)=1.

设总体X服从正态分布X~N(μ,σ^2),X1,X2,...,Xn为来自该总体的一个样本,则样本均值是

样本均值?那不直接是(X1+.+Xn)/n不过应该不是问这个吧可以说详细点?再问:是等于N(μ,σ^2)吗再答:有完整的题目么?这个X~N(μ,σ^2)意思是总体X服从总体均值为μ,总体标准差为σ的正

设总体X服从正态N(μ,σ²),x1,x2,xn为其总体的样本,求该样本的联合概率密度

fX(x)=φ((x-u)/σ)/σf(X1,X2,...Xn)=fX1(x1)fX2(x2)..fXn(xn)=(1/√(2π)σ)^n*e^Σ(xi-u)²/(2σ)如有意见,欢迎讨论,

设总体Y服从正态分布N(0,a),x1,x2,x3,x4为其样本,试问n=(x1-x2)^2/(x3+x4)^2服从什么

服从F(1,1)分布总体Y服从正态分布N(0,a),x1,x2,x3,x4为其样本.这句话说明了x1,x2,x3,x4相互独立,且都服从正态分布N(0,a),又由于独立的两态分布随机变量的线性组合仍是

概率论与数理统计 样本总体服从正态分布,样本方差服从什么分布

http://blog.sciencenet.cn/home.php?mod=space&uid=116082&do=blog&id=217991

设总体X服从正态分布N(u,σ^2) ,X1,X2,X3,...,Xn 是它的一个样本,则样本均值A的方差是 ? (需要

正态分布的规律,均值X服从N(u,(σ^2)/n)因为X1,X2,X3,...,Xn都服从N(u,σ^2),正太分布可加性X1+X2...Xn服从N(nu,nσ^2).均值X=(X1+X2...Xn)

某次测量中,测量结果服从正态分布N(1,4)求正太总体x在区间(-1,1)内取值概率.

转化为标准正态分布查表.请采纳,谢谢!再问:那个第二步是怎么来的再问:你学错了再问:写再答:

设两个总体X与Y相互独立都服从正态分布N(30,20^2)(X1,X2,…,X20),(Y1,Y2,…,Y25)分别为来

服从正态分布的随机变量的线性组合仍然服从正态分布,所以样本均值(X-Y)服从N(0,36)分布,(注:X-Y服从N(u1-u2,(σ1^2)/n1+(σ2^2)/n2).剩下的就是求正态分布的概率问题

关于概率论正态分布?如果说总体服从正态分布N(μ,σ2 ). 样本容量为10,那么X拔服从N(μ,σ2/10),那么其中

单个个体的值的样本服从正态分布N(μ,σ2)啊,因为是从这个总体中找的X呀.