设总体X的均值为u 样本方差为S^2 求E(S^2)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 07:09:04
设总体X的均值为u 样本方差为S^2 求E(S^2)
总体X具有均值μ,方差σ^2.从总体中取得容量为n的样本,Xˉ为样本均值,S^2为样本方差

对于θ,如果E(θ^)=θ,则θ^为θ的无偏估计.而样本均值可以认为是总体均值的无偏估计,即E(Xˉ)=E(X)=μ而样本方差可以认为是总体方差的无偏估计,即E(S^2)=D(X)=σ^2所以这个题就

设X1,X2,……Xn是总体X的样本,总体方差存在,X拔是样本均值,求X1与X拔的相关系数

给你点提示,你就能做出来了,D(X1+X拔)=D(X1)+D(X拔)+2Cov(X1,X拔)式中,D(X1+X拔)=D[(1+1/n)X1+1/n(X2+X3+……Xn)]=(1+1/n)^2D(X1

设(X1,X2,...,Xn)为总体X~N(0,1)的一个样本,X拔为样本均值,S^2为样本方差,则有( )

选DX拔=0,所以A、B错C由单正态总体的抽样分布定理得X拔/(S/根号n)~t(n-1),C错D中把n-1移到分母里面,得到分子是自由度为1的卡方分布,分母是自由度为n-1的卡方分布,满足F分布的定

设总体X~N(40,25的平方),从总体X中抽取一个容量为100的样本,求样本均值与总体均值之差的绝对值大于5的概率.

2(1-Φ(2)),然后查正态分布表,用的是同分布中心极限定理.不好打,就是把样本均值与总体均值之差标准化,除以σ/√n,然后5也除以这个,因为这个标准正态分布关于Y轴对称,所以就2倍的那个了.

X服从标准正态分布,抽取容量为16的样本均值和样本方差,则样本均值的期望和样本方差的期望是多少?

对于标准正态分布的取样,样本均值的期望就是0,样本方差的期望有两种理一种是样本内方差的期望,也就是标准差,是1一种是样本间方差的期望,标准误,公式为:s.e.=s.d./根号n对于本题,s.d.(标准

设总体X,X1,X2...Xn是取自总体X的一个样本,A为样本均值,则不是总体期望μ的无偏估计的是?

选B,因为他的期望不是是uE(A)=uE(X1+X2+X3)=E(X1)+E(X2)+E(X3)=3uE(0.2X1+0.3X2+0.5X3)=0.2E(X1)+0.3E(X2)+0.5E(X3)=u

设总体X服从正态分布X~N(μ,σ^2),X1,X2,...,Xn为来自该总体的一个样本,则样本均值是

样本均值?那不直接是(X1+.+Xn)/n不过应该不是问这个吧可以说详细点?再问:是等于N(μ,σ^2)吗再答:有完整的题目么?这个X~N(μ,σ^2)意思是总体X服从总体均值为μ,总体标准差为σ的正

样本方差 总体方差假定X1,X2,...,Xn为来自总体的重置简单随机样本,总体均值为μ、方差σ^2,Xˉ为样本均值.由

首先有结论:当诸Xi相互独立时,Var(∑Xi)=∑Var(Xi),证明的话用协方差Var(∑Xi)=Cov(∑Xi,∑Xi)=∑Cov(Xi,Xj)=∑Var(Xi)然后可得到:Var(1/n·∑X

设X1,X2,...Xn+1为来自正态总体X~N(u,)的容量为n的样本,,为样本X1,X2...,Xn的样本均值和样本

上面这个网址有关于这个结论的详细证明,如有不懂可追问.

设总体X服从正态分布N(u,σ^2) ,X1,X2,X3,...,Xn 是它的一个样本,则样本均值A的方差是 ? (需要

正态分布的规律,均值X服从N(u,(σ^2)/n)因为X1,X2,X3,...,Xn都服从N(u,σ^2),正太分布可加性X1+X2...Xn服从N(nu,nσ^2).均值X=(X1+X2...Xn)

设总体X的密度函数为 ,现已知样本均值为 ,求参数θ的矩法估计值 .

u=∫x/(θ-5)dx=x^2/2(θ-5)│(5~θ)=(θ+5)/2而μ‘=x’故(θ‘+5)/2=12得到θ’=19

已知总体为正态分布,方差未知,假定样本容量为25,样本均值为20,样本方差为16,请以95%的概率估计总体均

n=25,α=0.05,查t分布表得0.025的分位数为t(24)=2.0639,计算2.0639×√16/25=1.65112,所以总体均值95%的置信区间为(20-1.65112,20+1.651

设总体X服从区间(a,b)上的均匀分布,X1,X2,······Xn是来自总体X的一个样本,则样本均值的方差为

DX拔=DX/n=(b-a)^2/12n再问:为什么分母有一个n呢再答:DX拔=DX/n样本均值的期望=总体的期望样本均值的方差=n分之总体方差