设总体X的密度函数是f(x,a)= 最大似然估计

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 07:02:25
设总体X的密度函数是f(x,a)= 最大似然估计
概率论 设总体X的概率密度f(x)=(a+1)x^n 0

如果题目没错的话,就是这么做的

设总体X的密度函数f(),试求参数的矩法估计.

/>矩法估计思路大概就是先找出参数与期望之间的关系,然后用样本矩(样本平均数)代替期望,对参数进行估计.具体步骤如下:所以参数的估计值是样本平均数的三倍.如果还有问题再问我吧.

设总体X的概率密度为f(x,Ө )=Ө x^(-Ө -1),x>1;0,其他

EX=∫[1,+∞]x*Өx^(-Ө-1)dx=Ө∫[1,+∞]x^(-Ө)dx=Ө/(1-Ө).Ө=EX/(1+E

设F(x)是一个连续型随机变量的密度函数,a>0.证明:∫[F(x+a)-F(x)]dx=a 从负无穷大积到正无穷大!

题目写错了,应该是f是密度函数,右边F是分布函数证明如下,不用连续的性质∫[F(x+a)-F(x)]dx=∫∫_{x

设总体X的概率密度为f(x)=ae^(-ax),x>0;0,x=

EX=∫[0,+∞]x*ae^(-ax)dx=∫[0,+∞]e^(-ax)dx.[分部积分]=1/a.a的矩估计a^=1/Xˉ.

设总体x的分布函数为f(x),概率密度函数为f(x),(x1,x2…xn)是来自总体x的一个样本,x(1)和x(n)分别

X(1)f1(x)=n*(F(x))^(n-1)*f(x)F1(x)=(F(x))^nX(n)fn(x)=n*(1-F(x))^(n-1)*f(x)Fn(x)=(1-F(x))^n其中f(x)F(x)

求Ө的极大似然估计,设总体X的概率密度为f(x

设总体X的概率密度为f(x)=Өx^(Ө-1),0

设随机变量x的密度函数为f(x)=Ae(e的指数是:-|x|.)

(1).∫[-∞,+∞]f(x)dx=∫[-∞,0]Ae^xdx+∫[0,+∞]Ae^(-x)dx=A+A=1,A=1/2.(2).x=0时,F(x)=∫[-∞,0](1/2)e^tdt+∫[0,x]

设(x,y)的概率密度是f(x,y)=Ae^-(x+2y),x>0,y>0,求常数A,求(x,y)的分布函数

第一小题:考察的是连续型随机变量概率密度的性质∫∫f(x,y)dxdy=1是x,y的二重积分,积分上下限是0到正无穷大,不是不定积分,是定积分.积分完了就不会有x和y了,你的这个式子“2A(1-e^-

设总体X的概率密度函数为f(x;θ)=θ^(-1)*[e^(-x/θ)] 0

再问:不好意思啊,,,那个。。。X1,……Xn为其样本求H0:θ=2H1:θ=4的最佳检验给定显著性水平a=0.05能做就帮我做下不行也告诉我下不管怎么样我会采纳的谢谢~再答:抱歉,这个我不会呀,我们

设 X1,X2,X3.Xn为来自总体 X的样本,已知总体的分布密度函数为:[f(

亲爱的同学,你的题目抄写错误或图片拍摄不清晰,老师无法清楚理解题意,请重新核实你的问题再提问,谢谢!

设X1,X2,X3……,Xn为总体X的一个样本,X的密度函数f(x)=βx^(β-1),0

1、矩估计EX=∫xf(x)dx=∫xβx^(β-1)dx=β/(β+1)=x(平均)--β=x(平均)/(1-x(平均))2、最大似然估计L(β)=TTβxi^(β-1)-->LnL(β)=nLnβ

设总体X概率密度为f(x)=3/2 *x^2,│x│

n足够大的时候,样本均值的期望不就是X的期望么,用CLT可以证明,叫什么中心极限定理什么的.Y=根号n(样本均值-E(X))/X的标准差服从Normal(0,1)分布也就是根号n倍样本均值,服从Nor

设随机变量X的概率密度函数为f(x)={a/x^2,x>=10;0,x

(1)在区间(-无穷大,+无穷大)积分f(x)=在区间(10,+无穷大)积分f(x)==[-a/x]在无穷大的值-在x=10处的值=a/10.令其等于零,即令a/10=1,得,a=10.(2)F(x)

设随机变量X的分布密度函数f(x)=

由于X是随机变量,那么f(x)在[0,1]的定积分是1,即积分kx^3dx|[0,1]=1,即kx^4/4|0,1=1,得到k1^4/4=1,k=4

设X1,X2,…Xn为总体X~U[a,b]的样本,试求:X(1)的密度函数;X(n)的密度函数.

已知是均匀分布,立刻能写出每一个Xi的密度函数都是f(x)=1/(b-a)a<Xi<b那么它们的分布函数也能写出:当Xi<a时,F(x)=0当a<Xi<b时,F(x)=∫f(t)dt=(x-a)/(b