设投影区域为(x 2)^2 y^2=
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 00:19:34
如图阴影部分表示x-2y≥0x+3y≥0,确定的平面区域,所以劣弧.AB的弧长即为所求.∵kOB=-13,kOA=12,∴tan∠BOA=|12+131-12×13|=1,∴∠BOA=π4.∴劣弧AB
积分区域是圆S=πf(x,y)=1/π,-√(2y-y²)再问:没问题了
选D利用二重积分的积分区域对称性
设b=(x,y),因为b在x轴上投影为2,所以b=(2,y).因为ab=|a||b|cosθ,又a在b上的投影为|a|cosθ,所以|a|cosθ=ab/|b|=5√2/2,所以(4*2+3*y)/(
取L:x²+y²+4x-2y≤0===>(x+2)²+(y-1)²≤5∮L(x²-y)dx+(-y²+2x)dy=∫∫D[∂/&
由x2-x-2>0,得x<-1或x>2,故A=(-∞,-1)∪(2,+∞).由x+2x+1≥0,得:x≤-2或x>-1,故B=(-∞,-2]∪(-1,+∞).∴A∩B=(-∞,-2]∪(2,+∞).
本题是几何概型问题,区域E的面积为:S=2×12+∫1121xdx=1+lnx|112=1-ln12=1+ln2∴“该点在E中的概率”事件对应的区域面积为1+ln2,矩形的面积为2由集合概率的求解可得
本题是几何概型问题,区域E的面积为:S1=∫20x2dx=13x3|20=83,∴“该点在E中的概率”事件对应的区域面积为83,则落在E内的点的概率是838=13.设落在E内的点的个数为n,∴n30=
设直线方程为y=kx+2,把它代入x2+2y2=2,整理得(2k2+1)x2+8kx+6=0.要使直线和椭圆有两个不同交点,则△>0,即k<-62或k>62.设直线与椭圆两个交点为A
原式=(x2+2x+1)+(4x2-8xy+4y2)=4(x-y)2+(x+1)2+3,∵4(x-y)2和(x+1)2的最小值是0,即原式=0+0+3=3,∴5x2+4y2-8xy+2x+4的最小值为
∵4x2+y2+xy=1∴(2x+y)2-3xy=1令t=2x+y则y=t-2x∴t2-3(t-2x)x=1即6x2-3tx+t2-1=0∴△=9t2-24(t2-1)=-15t2+24≥0解得−21
解由2x2+3y2=4x得2x2-4x+3y2=0即2(x-1)^2+3y^2=2即(x-1)^2+y^2/(2/3)=1故由三角函数知识设x=1+cosa,y=√6sina/3则x+y=1+cosa
y=2x−x2与x轴所围成的区域为以C(1,0)为圆心半径为1的上半圆,面积SD=12π×12=π2,该点落入区域{(x,y)∈D|x2+y2<2}的区域如图:如图阴影部分,则扇形AOC的面积S=14
dy/dx=2x乘以e∧x2
双曲线的a=1,b=23,c=13.设|PF1|=3m,|PF2|=2m.∵|PF1|-|PF2|=2a=2,∴m=2.于是|PF1|=6,|PF2|=4.∴|PF1|2+|PF2|2=52=|F1F
所求面积=∫(y²/2)dy=y³/6│=1/6所求体积=∫2π(y²/2)ydy=π∫y³dy=πy^4/4│=π/4.
你好,求Y=2X+1与X轴的交点啊,令Y=0,解得X=-0.5.面积都不用积分,是个简单三角形,知道底和高,简单算下就知道了.
π/4.M区域是对角线长为2正方形,连接四个+-1即成,面积为2;N是半径为1/√2的圆,面积为π/2,以原点为圆心画圆,N在M内,概率为π/4
选择A再问:额。有步骤嘛。。