设抛物线y平方=8x的焦点为F,准线为l,P为抛物线上一点,PA垂直于l

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 17:28:20
设抛物线y平方=8x的焦点为F,准线为l,P为抛物线上一点,PA垂直于l
设F为抛物线y方=4x的焦点,A,B,C为该抛物线上3点

设A(x1,y1),B(x2,y2),C(x3,y3)F(1,0)向量FA+向量FB+向量FC=(x1+x2+x3-3,y1+y2+y3)=(0,0)所以x1+x2+x3-3=0,x1+x2+x3=3

设抛物线y^2=8x的焦点为F,倾斜角为锐角的直线l经过F,且与抛物线相交於A,B两点.若F是缐段A

设A(a²/8,a),B(b²/8,b)y²=8x=2*4x,F(2,0)AB的方程:(y-b)/(a-b)=(x-b²/8)/(a²/8-b

设直线y=x+2与抛物线x平方=4y交于P.Q两点,F为抛物线的焦点,则PF的绝对值+QF的绝对值的值等于?

抛物线的焦点是(0,1)准线是:y=-1PF、QF分别是P、Q两点到焦点的距离,根据抛物线的性质,分别等于两点到准线的距离,设P、Q的纵坐标分别是y1,y2.则PF+QF=y1+y2+2联立两个方程:

已知抛物线y平方=8x的焦点为F,直线y=k(x+2)与抛物线交于A,B两点

焦点为(2,0)、联解Y平方=8X、Y=k(X+2)两个方程、得K平方(X+2)的平方=8X得到一个关于X的二元一次方程.(含K平方)当方程式有解时.利用维达定理X1+X2+4=Y1+Y2Y1=K(X

设抛物线y^2=4x的焦点为F,抛物线上一点P的横坐标为3,则|PF|

抛物线上一点到焦点的距离等于这个点到准线的距离然后看你会不会,不会了往下看由题可知焦点坐标(1,0)准线方程:x=-1距离=3+1=4所以|PF|=4

设P为抛物线y^2=8x上任一点,F为焦点,点A的坐标为(3,1),求|PA|+|PF|的最小值.

易知焦点F坐标为(2,0),准线L为x=-2显然A(3,1)在抛物线内令P点坐标为(m,n)过P作准线L的垂线交准线于Q则由抛物线定义知|PF|=|PQ|于是有|PA|+|PF|=|PA|+|PQ|要

设F为抛物线y^2=4x的焦点,A、B、C为该抛物线上三点

解抛物线y^2=4x的准线是x=-1焦点是(1,0)抛物线上一点到焦点的距离:x-(-1)=x+1FA+FB+FC=0{向量},∴xA-1+xB-1+xC-1=0∴xA+1+xB+1+xC+1=6FA

设抛物线y2=2x的焦点为F,

解题思路:利用三角形面积公式解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/include/rea

设圆F以抛物线P:y^2=4x的焦点F为圆心,且抛物线P有且只有一个公共点

1)抛物线的焦点坐标为(1,0),有抛物线的对称性可知若圆与其边相交则必有上下两个交点,故圆只可能与顶点相交,故圆方程为:(x-1)^2+y^2=1.2)两条直线对称,算一条就行,根据几何算出它经过(

把抛物线y的平方;=4x绕焦点F按顺时针方向旋转45°,设此时抛物线上的最高点为P,则PF长为?

旋转过后,过P的切线斜率为0旋转之前,过P的切线斜率为1y^2=4x2y*y'=4y'=2/y1=2/yy=2P(1,2)F(1,0)|PF|=2再问:求导的过程不懂再答:把y看作是x的函数,先对y求

已知抛物线y平方=8x,直线l过抛物线的焦点F,且倾斜角为45,直线l与抛物线交于CD两点,

设C(x1,y1)D(x2,y2)由题目可知:p=4那么焦点F(2,0)因为直线的倾斜角为45,所以斜率为1所以直线方程为:y=x-2带入抛物线方程中有:(x-2)^2=8x即是:x^2-12x+4=

已知P(4,-1),F为抛物线y^2=8x的焦点,M为抛物线上的点

过M作MN//x轴交准线x=-2于N则:MF=MN所以,MP+MF=MP+MN≥PN所以,P、M、N三点共线时,MP+MF值最小所以,M点纵坐标=P点纵坐标=-1M点横坐标=(-1)^2/8=1/8即

已知抛物线y平方=1/2x,O为坐标原点,F为抛物线的焦点,OF=1/8,求抛物线上点P的坐标,

设P(X,Y)则S=(1/8*|Y|)/2=1/4解得:Y=4或-4则X=32所以P(32,-4)或P(32,4)

.已知抛物线y的平方=4x 的焦点为 f,

焦点为(1,0),则直线不与x轴垂直的直线设为y=√3(x-1),直线与x轴垂直的直线设为x=1,把问题补全再问:已知抛物线y的平方=4x的焦点为f过f作斜率为√3的直线与抛物线在x轴上方的部分交于m

抛物线的参数方程为X=8t的平方Y=8t.问抛物线的焦点是什么?

这道题你给Y=8t,两边同时平方,然后和X=8t平方联立消去t平方就可以啦.

已知抛物线y平方=4x,过它的焦点F作倾斜角为45度的斜线,交抛物线与A,B两点,设抛物线的顶点为O,求三角形ABO的面

抛物线标准形式y^2=2px①求出p=2;焦点坐标为(p/2,0),求出焦点P的坐标为(1,0).直线斜率为±1,因为为对称图形,所以可以设斜率为1,因此直线AB的方程为y=x-1②.接方程组{①,②

设抛物线y平方=2px(p>0)的焦点为F,经过点F的直线交抛物线与A.B两点,点C在抛物线的准线上,且BC平行x轴,证

设A(x1,y1),B(x2,y2),则C(-p/2,y2)设直线AB:x=ky+p/2,代入y^2=2px得y^2-2pky-p^2=0所以y1y2=-p^2,y2=-p^2/y1OA的斜率为k1=

已知抛物线y平方=2px(p>0)的焦点为F 点是抛物线上横坐标为且位于x轴上方 点A到抛物线焦点距离为5 求抛物线方程

点A到焦点的距离等于到准线的距离,而y^2=2px准线方程为x=-1/2p;所以1/p+4=5;解之得p=2;抛物线方程为y^2=4x.

已知直线y=k(x-2)(k>0)与抛物线y平方=8x相交于A,B亮点,F为抛物线的焦点

由抛物线C:y²=8x易知F(2,0)y=k(x-2)化为x=y/k+2得出y²-8y/k-16=0(也可不化直接与y²=8x联立)设A(x1,y1)B(x2,y2)则y

抛物线的焦点f是圆x平方+y平方-4x=0的 圆心

首先考虑直线无斜率,即x=-1或x=3,只有x=-1过(-1,3)且与圆相切,所以添x=-1再考虑有斜率并设为k,方程出来了,y-3=k(x+1),化为一般式为kx-y+3+k=0,圆心(1,0)到直