设抛物线y平方=8x的焦点为F,准线为l,P为抛物线上一点,PA垂直于l
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 17:28:20
设A(x1,y1),B(x2,y2),C(x3,y3)F(1,0)向量FA+向量FB+向量FC=(x1+x2+x3-3,y1+y2+y3)=(0,0)所以x1+x2+x3-3=0,x1+x2+x3=3
设A(a²/8,a),B(b²/8,b)y²=8x=2*4x,F(2,0)AB的方程:(y-b)/(a-b)=(x-b²/8)/(a²/8-b
抛物线的焦点是(0,1)准线是:y=-1PF、QF分别是P、Q两点到焦点的距离,根据抛物线的性质,分别等于两点到准线的距离,设P、Q的纵坐标分别是y1,y2.则PF+QF=y1+y2+2联立两个方程:
焦点为(2,0)、联解Y平方=8X、Y=k(X+2)两个方程、得K平方(X+2)的平方=8X得到一个关于X的二元一次方程.(含K平方)当方程式有解时.利用维达定理X1+X2+4=Y1+Y2Y1=K(X
抛物线上一点到焦点的距离等于这个点到准线的距离然后看你会不会,不会了往下看由题可知焦点坐标(1,0)准线方程:x=-1距离=3+1=4所以|PF|=4
易知焦点F坐标为(2,0),准线L为x=-2显然A(3,1)在抛物线内令P点坐标为(m,n)过P作准线L的垂线交准线于Q则由抛物线定义知|PF|=|PQ|于是有|PA|+|PF|=|PA|+|PQ|要
解抛物线y^2=4x的准线是x=-1焦点是(1,0)抛物线上一点到焦点的距离:x-(-1)=x+1FA+FB+FC=0{向量},∴xA-1+xB-1+xC-1=0∴xA+1+xB+1+xC+1=6FA
解题思路:利用三角形面积公式解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/include/rea
1)抛物线的焦点坐标为(1,0),有抛物线的对称性可知若圆与其边相交则必有上下两个交点,故圆只可能与顶点相交,故圆方程为:(x-1)^2+y^2=1.2)两条直线对称,算一条就行,根据几何算出它经过(
旋转过后,过P的切线斜率为0旋转之前,过P的切线斜率为1y^2=4x2y*y'=4y'=2/y1=2/yy=2P(1,2)F(1,0)|PF|=2再问:求导的过程不懂再答:把y看作是x的函数,先对y求
设C(x1,y1)D(x2,y2)由题目可知:p=4那么焦点F(2,0)因为直线的倾斜角为45,所以斜率为1所以直线方程为:y=x-2带入抛物线方程中有:(x-2)^2=8x即是:x^2-12x+4=
过M作MN//x轴交准线x=-2于N则:MF=MN所以,MP+MF=MP+MN≥PN所以,P、M、N三点共线时,MP+MF值最小所以,M点纵坐标=P点纵坐标=-1M点横坐标=(-1)^2/8=1/8即
设P(X,Y)则S=(1/8*|Y|)/2=1/4解得:Y=4或-4则X=32所以P(32,-4)或P(32,4)
焦点为(1,0),则直线不与x轴垂直的直线设为y=√3(x-1),直线与x轴垂直的直线设为x=1,把问题补全再问:已知抛物线y的平方=4x的焦点为f过f作斜率为√3的直线与抛物线在x轴上方的部分交于m
这道题你给Y=8t,两边同时平方,然后和X=8t平方联立消去t平方就可以啦.
抛物线标准形式y^2=2px①求出p=2;焦点坐标为(p/2,0),求出焦点P的坐标为(1,0).直线斜率为±1,因为为对称图形,所以可以设斜率为1,因此直线AB的方程为y=x-1②.接方程组{①,②
设A(x1,y1),B(x2,y2),则C(-p/2,y2)设直线AB:x=ky+p/2,代入y^2=2px得y^2-2pky-p^2=0所以y1y2=-p^2,y2=-p^2/y1OA的斜率为k1=
点A到焦点的距离等于到准线的距离,而y^2=2px准线方程为x=-1/2p;所以1/p+4=5;解之得p=2;抛物线方程为y^2=4x.
由抛物线C:y²=8x易知F(2,0)y=k(x-2)化为x=y/k+2得出y²-8y/k-16=0(也可不化直接与y²=8x联立)设A(x1,y1)B(x2,y2)则y
首先考虑直线无斜率,即x=-1或x=3,只有x=-1过(-1,3)且与圆相切,所以添x=-1再考虑有斜率并设为k,方程出来了,y-3=k(x+1),化为一般式为kx-y+3+k=0,圆心(1,0)到直