设数列an前n项和味sn=n^2-2n+3

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 16:15:18
设数列an前n项和味sn=n^2-2n+3
设数列an的前n项和为sn,sn=n^2+n,数列bn的通项公式bn=x^(n-1)

S_n=n^2+n,S_(n-1)=〖(n-1)〗^2+n-1,∴a_n=S_n-S_(n-1)=2n (n>1),验证当n=1时,a_1=S_1=2,∴n=1时亦立,∴a_n=2n,

设数列{an}的前n项和为Sn=2an-2n,

(Ⅰ)因为a1=S1,2a1=S1+2,所以a1=2,S1=2,由2an=Sn+2n知:2an+1=Sn+1+2n+1=an+1+Sn+2n+1,得an+1=sn+2n+1①,则a2=S1+22=2+

设数列{an}的前n项和为Sn,且对任意正整数n,an+Sn=4096

(1)由已知有:2a1=4096得a1=2048,又an+sn=4096,an+1+Sn+1=4096,两式相减得an+1=an/2,所以an是以1/2为公比的等比数列,故an=2048*(1/2)^

设数列{an}的前n项和为Sn,Sn=n-an,n属于自然数.求:证明:数列{an-1}是等比数列

∵Sn=n-an,∴a(n+1)=S(n+1)-S(n)=(n+1)-a(n+1)-n+a(n)=1+a(n)-a(n+1);∴2a(n+1)=1+a(n);∴2a(n+1)-2=1+a(n)-2,即

已知数列an的首项a1=5,前n项和为Sn,且S(n+1)=2Sn+n+5(n∈N*),求数列{an}的前n项和Sn,设

n=an+1S(n+1)=2Sn+n+5.1Sn=2S(n-1)+n-1+5=2S(n-1)+n+4.2(1)-(2)得S(n+1)-Sn=2[Sn-S(n-1)]+1a(n+1)=2an+1a(n+

设 数列{an}的前n项和为Sn,已知b*an - 2^n=(b-1)Sn

2^(n+1)-2^n=2*2^n-2^n=2^nb*an-2^n=(b-1)Sn,b*a(n+1)-2^(n+1)=(b-1)S(n+1)两式相减(左-左=右-右):[b*a(n+1)-2^(n+1

设数列{An}的前n项和Sn=2An-2^n

(2)a(n+1)=s(n+1)-s(n)=[2a(n+1)-2^(n+1)]-[2a(n)-2^n]所以a(n+1)-2an=2^n,当然就是等比数列哦

设数列{an}的前n项和Sn=(-1)^n(2n^2+4n+1)-1

Sn=(-1)^n(2n^2+4n+1)-1Sn-1=(-1)^(n-1)[2(n-1)^2+4(n-1)+1]-1an=Sn-Sn-1=(-1)^n(4n^2+4n)bn=1/(4n^2+4n)=1

设数列{an}的前n项和Sn=(-1)^n(2n^2+4n+1)-1,

an就已求错了.Sn=(-1)^n(2n^2+4n+1)-1S(n-1)=(-1)^(n-1)*[2(n-1)^2+4(n-1)+1]-1=-(-1)^n(2n^2-1)-1an=Sn-S(n-1)=

设数列{an}的前n项和为Sn,Sn=a

设数列{an}的前n项和为Sn,Sn=a1(3n−1)2(对于所有n≥1),则a4=S4-S3=a1(81−1)2−a1(27−1)2=27a1,且a4=54,则a1=2故答案为2

设数列{an}的前N项和为Sn,已知1/Sn+1/S2+1/S3+.+1/Sn=n/(n+1),求Sn

由1/S1+1/S2+1/S3+.+1/Sn=n/(n+1),知,当n=1时,s1=2,当n≥2时1/S1+1/S2+1/S3+.+1/Sn-1=(n-1)/n,两式相减得,1/sn=1/[n(n+1

设数列an的前n项和为Sn,a1=1,an=(Sn/n)+2(n-1)(n∈N*) 求证:数列an为等差数列,

/>n≥2时,an=Sn/n+2(n-1)Sn=nan-2n(n-1)S(n-1)=(n-1)an-2(n-1)(n-2)Sn-S(n-1)=an=nan-2n(n-1)-(n-1)an+2(n-1)

设数列{an}的前n项和为Sn,a1=10,a(n+1)=9Sn+10

S(n+1)=Sn+a(n+1)=10Sn+10S(n+1)+10/9=10*(Sn+10/9)Sn+10/9成等比数列,q=10S1+10/9=10+10/9=100/9Sn+10/9=10*(n-

设数列an的首项a1等于1,前n项和为sn,sn+1=2n

a1=1a2=s2-a1=2-1=1a3=s3-a1-a2=4-1-1=2a4=s4-a1-a2-a3=6-1-1-2=2a5=s5-a1-a2-a3-a4=8-1-1-2-2=2a6=s6-a1-a

设数列{an}前n项和为Sn,数列{Sn}的前n项和为Tn,满足Tn=2Sn-n2,n∈N*.

(1)当n=1时,T1=2S1-1因为T1=S1=a1,所以a1=2a1-1,求得a1=1(2)当n≥2时,Sn=Tn-Tn-1=2Sn-n2-[2Sn-1-(n-1)2]=2Sn-2Sn-1-2n+

设数列{an}的前n项和为Sn,且对任意正整数n,an+Sn=4096.

(1)∵an+Sn=4096,∴a1+S1=4096,a1=2048.当n≥2时,an=Sn-Sn-1=(4096-an)-(4096-an-1)=an-1-an∴anan−1=12an=2048(1

设数列{an}的前n项和Sn=2an-2^n

1.A1=S1=2A1-2^1A1=2S2=A1+A2=2A2-2^2A2=6S3=S2+A3=2A3-2^3A3=16S4=S3+A4=2A4-2^4A4=402.Sn=2An-2^nS(n+1)=

已知数列{an}的通项公式an=log2[(n+1)/(n+2)](n∈N),设其前n项的和为Sn,则使Sn

an=log2(n+1)-log2(n+2)Sn=log2(2)-log2(3)+log2(3)-log2(4)+.+log2(n)-log2(n+1)+log2(n+1)-log2(n+2)=log

设数列{an}的前n项和为Sn,且Sn=2^n-1.

解题思路:考查数列的通项,考查等差数列的证明,考查数列的求和,考查存在性问题的探究,考查分离参数法的运用解题过程: