设数列an是公差不为0的等差数列S3的平方=9S2
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 03:51:11
数列an满足条件:A1=1,A2=r(r>0)数列{an+an+1}是公差为d的等差数,令bn=an+an+1即首项b1=a1+a2=1+rb3=a3+a4=b1+2d=1+r+2db5=a5+a6=
设{A(n)}的通项公式为:A(n)=2+d(n-1){B(n)}的通项公式为:B(n)=2×q^(n-1)则{A(n)}的前n项和为:S(n)=[A(1)+A(n)]n/2=[4+d(n-1)]n/
(1)令通项公式:an=a1+(n-1)da2=a1+da4=a1+3dS10=5(2a1+9d)=110由题意:a2^2=a1*a4即(a1+d)^2=a1*(a1+3d)由题意:a1=d=2所以通
a1=a2-d,a5=a2+3d所以a2a2=(a2-d)(a2+3d)得2da2=3dd即a2=3d/2所以a1=a2-d=1d/2=1得出d=2公差=2,首项=1,后面你会的即a10=19故S10
(1)当n=4时有a1,a2,a3,a4.将此数列删去某一项得到的数列(按照原来的顺序)是等比数列.如果删去a1,或a4,则等于有3个项既是等差又是等比.可以证明在公差不等于零的情况下不成立(a-d)
本题考查的是数列重组后新数列的性质问题当n=2k时,(相邻两项提公因式后,变成n/2个特殊数列公差为4/3)Sn=b1+b2+...+b2k=A1A2-A2A3+A3A4-A4A5+...+A(2k-
∵(S2)^2=S1*S4∴(a1+a2)^2=a1(a1+a2+a3+a4)=>(2a1+d)^2=a1(4a1+6d)=>4(a1)^2+4a1d+d^2=4(a1)^2+6a1d=>d^2=2a
(1)(an+2)/2=根号下2Sn所以8Sn=(an+2)^2n=1,S1=a1.8a1=(a1+2)^2,得a1=2n=2,8S2=(a2+2)^2,8(a1+a2)=(a2+2)^2,得a2=6
1.设数列{an}的公差是d,则a(n+1)cosA+an*sinA=(an+d)*cosA+an*sinA=1即(cosA+sinA)*an=1-dcosA若cosA+sinA不等于0,则an=(1
设等比数列{an}的公比为q,则:a2=a1q,a3=a1q2,由a3是a1,a2的等差中项,得:2a3=a1+a2,即2a1q2=a1+a1q,因为a1≠0,所以2q2-q-1=0,解得:q=−12
设该等差数列是首项为a1,公差为dS3=3a1+3(3-1)*d/2=3a1+3dS2=2a1+2(2-1)*d/2=2a1+dS4=4a1+4(4-1)*d/2=4a1+6d又:S3²=9
把首项和公差设出来解个二元一次方程组就行了设首项为a1公差为d则(1)[a1+(a1+d)+(a1+2d)]^2=9[a1+(a1+d)](2)a1+(a1+d)+(a1+2d)+(a1+3d)=4[
由{an}是公差不为0的等差数列且|a11|=|a51|,可知a11=-a51,即a1+10d=-(a1+50d),可得a1=-30d;a20=22,即a1+19d=22,即-30d+19d=22,所
在等差数列中,公差d不为0,a11+40d=a51,即a11=a51-40d因为|a11|=|a51|,即a11=-a51,或者a11=a51(不符,舍去)所以a11+a51=2*a31=0,即a31
数列{an}是公差不为0的等差数列,设公差为d,S1,S2,S4成等比数列,则S22=S1•S4,∴( 2a1+d)2=a1•(4a1+6d),化简可得d=2a1∴a3a1=a1+2da1=
由题意得(an+1)/2=√(Sn×1)Sn=[(an+1)/2]²n=1时,S1=a1=[(a1+1)/2]²,整理,得(a1-1)²=0a1=1n≥2时,Sn=[(a
a1+a2+...+an=(1/2)(an²+an)a1+a2+...+a(n-1)=(1/2)(a(n-1)²+a(n-1))两式相减得an=(1/2)(an²+an)
解题思路:同学你好,本题目主要是利用等差数列的定义及数列的通项公式和前N项和公式,当然要注意转化表示an用n解题过程: