设数列an的前n项和为Sn 4sn=an平方 2an-3

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 20:34:00
设数列an的前n项和为Sn 4sn=an平方 2an-3
强大的数学题:设数列{An}的前N项和为Sn已知A1=.

因为:(5n-8)Sn+1-(5n+2)Sn=-20n-8...(1)所以:(5(n+1)-8)Sn+2-(5(n+1)+2)Sn+1=-20(n+1)-8即:(5n-3)Sn+2-(5n+7)Sn+

设数列{an}的前n项和为Sn=2an-2n,

(Ⅰ)因为a1=S1,2a1=S1+2,所以a1=2,S1=2,由2an=Sn+2n知:2an+1=Sn+1+2n+1=an+1+Sn+2n+1,得an+1=sn+2n+1①,则a2=S1+22=2+

设数列{an}的前n项和为Sn,且对任意正整数n,an+Sn=4096

(1)由已知有:2a1=4096得a1=2048,又an+sn=4096,an+1+Sn+1=4096,两式相减得an+1=an/2,所以an是以1/2为公比的等比数列,故an=2048*(1/2)^

设数列{an}的前n项和为Sn,Sn=n-an,n属于自然数.求:证明:数列{an-1}是等比数列

∵Sn=n-an,∴a(n+1)=S(n+1)-S(n)=(n+1)-a(n+1)-n+a(n)=1+a(n)-a(n+1);∴2a(n+1)=1+a(n);∴2a(n+1)-2=1+a(n)-2,即

设数列{an}的前n项和为Sn=43

∵数列{an}的前n项和为Sn=43an-13×2n+1+23(n=1,2,3…),∴当n=1时,a1=S1=43a1−13×22+23,解得a1=2.当n≥2时,an=Sn-Sn-1=43an-13

设数列{an}的前n项和为Sn=2n²+2n+1 则求通项公式为

Sn=2n²+2n+1Sn-1=2(n-1)^2+2(n-1)+1n>=2an=Sn-Sn-1=4n-2+2=4nn=1a1=5an={5(n=1);4n(n>=2)}

设 数列{an}的前n项和为Sn,已知b*an - 2^n=(b-1)Sn

2^(n+1)-2^n=2*2^n-2^n=2^nb*an-2^n=(b-1)Sn,b*a(n+1)-2^(n+1)=(b-1)S(n+1)两式相减(左-左=右-右):[b*a(n+1)-2^(n+1

设数列{an},{bn}都是等差数列,它们的前n项和分别为sn,Tn

答:1设an,bn的公差分别为d1,d2,Sn=na1+n(n-1)d1/2,Tn=nb1+n(n-1)d2/2,令S(n+3)=(n+3)a1+(n+3)(n+2)d1/2=Tn=nb1+n(n-1

已知数列an的前n项和Sn=n^2,设bn=an/3^n,记数列bn的前n项和为Tn.

Sn=n^2推出an=2n-1bn=(2n-1)/3^nTn=b1+b2+b3+……+bn-1+bn=1/3+3/3^2+5/3^3+……+(2n-3)/3^n-1+(2n-1)/3^n①3Tn=1+

设数列{an}的前n项和为Sn,Sn=a

设数列{an}的前n项和为Sn,Sn=a1(3n−1)2(对于所有n≥1),则a4=S4-S3=a1(81−1)2−a1(27−1)2=27a1,且a4=54,则a1=2故答案为2

已知数列{an}的前n项和sn=n^2,设bn=an/3^n,记数列{bn}的前n项和为Tn

根据A1=S1(n=1);An=Sn-Sn-1(n>=2)可得An=2n-1;进而得Bn=(2n-1)/3^n下证Tn=1-(n+1)/3^n显然T1=1/3=B1Tn-Tn-1=1-(n+1)/3^

设数列{an}的前n项和Sn=2(an-3),证明{an}为等比数列,并求通项公式

an=Sn-S(n-1)=2(an-3)-2[a(n-1)]-3=2an-2a(n-1)]an=2a(n-1)所以an是等比数列q=1S1=a1所以a1=2(a1-3)a1=6所以an=6*2^(n-

设数列an的前n项和为Sn,a1=1,an=(Sn/n)+2(n-1)(n∈N*) 求证:数列an为等差数列,

/>n≥2时,an=Sn/n+2(n-1)Sn=nan-2n(n-1)S(n-1)=(n-1)an-2(n-1)(n-2)Sn-S(n-1)=an=nan-2n(n-1)-(n-1)an+2(n-1)

已知数列an的前n项和Sn=n^2,设bn=an/3n,记数列bn的前n项和为Tn

Sn=n^2S(n-1)=(n-1)^2an=Sn-S(n-1)=n^2-(n-1)^2=2n-1因此得到数列{an}的通项公式为an=2n-1

设数列{an}的前n项和为Sn,令T

根据题意得,数列a1,a2,…,a500的“理想数”为s1+s2+…+s500500=2004,即s1+s2+…+s500=2004×500;∴数列2,a1,a2,…,a500的“理想数”为:2+(s

设数列{an}前n项和为Sn,数列{Sn}的前n项和为Tn,满足Tn=2Sn-n2,n∈N*.

(1)当n=1时,T1=2S1-1因为T1=S1=a1,所以a1=2a1-1,求得a1=1(2)当n≥2时,Sn=Tn-Tn-1=2Sn-n2-[2Sn-1-(n-1)2]=2Sn-2Sn-1-2n+

设数列{an}的前n项和为Sn,且对任意正整数n,an+Sn=4096.

(1)∵an+Sn=4096,∴a1+S1=4096,a1=2048.当n≥2时,an=Sn-Sn-1=(4096-an)-(4096-an-1)=an-1-an∴anan−1=12an=2048(1

设数列{an}的前n项和为Sn,点(n,S

因为(n,Snn)在y=3x-2的图象上,所以将(n,Snn)代入到函数y=3x-2中得到:Snn=3n−2,即{S}_{n}=n(3n-2),则an=Sn-Sn-1=n(3n-2)-(n-1)[3(

设数列{an}的前n项和为Sn,且Sn=2^n-1.

解题思路:考查数列的通项,考查等差数列的证明,考查数列的求和,考查存在性问题的探究,考查分离参数法的运用解题过程: