设数列nan收敛级数n(an-an 1)收敛证级数an收敛

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 08:01:08
设数列nan收敛级数n(an-an 1)收敛证级数an收敛
级数an的平方收敛,an>0,求证级数an除以n收敛

这个题很经典的,用基本不等式就可以做.省去下标∑an/n=∑(1/n)*a_n

级数an^2收敛,证明级数an除以n收敛(an>0)

利用均值不等式可得an/n小于等于(an^2+1/(n^2))/2,而级数an^2和级数1/(n^2)均收敛,所以由比较原则,级数an/n收敛.用手机打出来的,希望你能看懂,关于级数1/(n^p)当p

设数列{nan}收敛,且级数∑an收敛,证明级数∑n(an-an-1)也收敛

先从1到N求和:∑n(an-an-1)=NaN-∑an-1这里求和都是从1开始到N再令N趋于无穷,前面的收敛,后面部分也收敛所以整体收敛

设级数∑(an)^2收敛 则级数∑an/n是收敛还是发散

若∑(an平方)收敛,证明∑(an/n)必收敛证明,∑(an)^2收敛,∑(bn)^2=∑(1/n)^2收敛(p级数p>1时收敛)所以∑|anbn|≤∑(1/2)((an)^2+(bn)^2)收敛(因

证明级数的收敛若级数an(n从1到无穷)收敛,数列bn收敛,证明级数anbn(n从1到无穷)收敛,提示说用柯西收敛准则,

这题明显少条件,如果bn是单调的就可以了.否则结论不成立.反例:an=(-1)^n/n^(1/2),级数an收敛.bn=(-1)^n/n^(1/2),数列bn收敛于0,但级数anbn=级数1/n是发散

级数收敛性的证明求:设∑an^2收敛,证明:∑an/n绝对收敛?

证明:∑an^2收敛,所以,∑|an|收敛,所以,∑|an|/n收敛,所以,∑an/n绝对收敛.

请举一个正项数列{an} lim an=0,但是(-1)^n*an的求和级数不收敛

a(2n)=1/2^na(2n+1)=1/n这样级数的正部收敛,而负部发散,所以级数发散.(用这种方法可以构造出很多例子)说明交错级数的判别条件还是很重要的.

高二数列题:设数列{an}满足an+1=an^2-nan+1,n为正整数,当a1>=3时,证明……

(1)当n=1时,a1>=3=1+2,an>=n+2成立;当n>1时,an=(an-1)^2-nan-1+1,令S=an-(n+2)=(an-1)^2-nan-1+1-(n+2)=(an-1)^2-(

高数证明题!若数列{nan}有界.证明级数(an的平方)收敛!

nan《M,则an《m/n,(an)^2《m^2/n^2,而级数1/n^2收敛,故由大M判别法知原级数收敛.你懂得?

设数列{an}满足a1+2a2+3a3+.+nan=n(n+1)(n+2)

令n=1时,a1=1*2*3=6;依题意:a1+2a2+3a3+.+nan=n(n+1)(n+2),a1+2a2+3a3+.+nan+(n+1)a(n+1)=(n+1)(n+2)(n+3)两式相减,得

an>0,{nan}有界,证明级数an收敛

可以证明a_n一定收敛到0否则,存在e,对任意N,都存在n>N,使得a_n>e这时,n*a_n>n*e>N*e而N是任意的,所以{n*a_n}就不是有界的,矛盾!故a_n一定收敛到0

设数列{an}是首项为1的正数数列,且(n+1)a^2n+1-nan^2+an+1an=0

(n+1)a^2n+1-nan^2+an+1an=0因式分解,得[a(n+1)+an]*[(n+1)a(n+1)-nan]=0数列{an}是首项为1的正数数列,所以a(n+1)+an>0,则(n+1)

设数列{Un}收敛于a,则级数(Un-U(n-1))=?)

应该等于n乘n-1也就是等于(a-u)乘(n剪1)答案就是a乘u再问:可我这边答案写着是U1-a,就是没有步骤再答:把你的QQ号给我,我和你讲再问:1309288676

设级数∑An收敛,且lim(nAn)=a,证明∑n(An-A(n+1))收敛

马上写来再答:设级数∑An收敛于bn(An-A(n+1))=nAn-(n+1)A(n+1)-A(n+1)Sn=∑(k=1,n)[kAk-(k+1)A(k+1)-A(k+1)]=A1-(n+1)A(n+

问道数列题.设数列an满足a1+2a2+3a3+...+nan=2^n(n属于正自然数),则数列an的通项是?

an满足an满足a1+2a2+3a3+...+nan=2^n所以有a1+2a2+3a3+...+(n-1)a(n-1)=2^(n-1)上面两式作减法有nan=2^n-2^(n-1)=2^(n-1)an

设数列{un}收敛于a,则级数(un-u(n-1))=?)

∑(un-u(n-1))=(u1-u0)+(u2-u1)+(u3-u2)+(u4-u3)+...=un-u0=a-u0其中u0为数列的首项再问:�Ǹ�Ҫ�DZ�ɡ�Un-U(n��1)��再答:∑Un-

设数列{nan}收敛,级数∑n(an-an-1)也收敛,证明级数∑an收敛

按定义将∑n(an-an-1)展开,找到三个级数之间部分和的关系再答:再答:不用客气^_^

高数高手来,数列{an}收敛,为什么级数∑n从1到∞(a下标n+1 -a下标n)收敛?

注:[*]表示下标∑(a[n+1]-a[n])=lim∞>(a[2]-a[1]+a[3]-a[2]+···+a[n+1]-a[n])=lim∞>(a[n+1]-a[1])由于{an}收敛,故极限lim