设数列xn满足,x1=1,xn 1=2-1 1 xn,判断xn是否存在极限

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 18:37:41
设数列xn满足,x1=1,xn 1=2-1 1 xn,判断xn是否存在极限
已知数列{xn}满足x1=2,x(n+1)=xn^3;设bn=lgxn,求数列{bn}的通项公式

x(n+1)=(xn)^3lgx(n+1)=3lgxnlgxn=3^(n-1).lgx1=(lg2).3^(n-1)bn=lgxn=(lg2).3^(n-1)

函数f(x)=2x/x+2,设数列{xn}满足X(n+1)=f(Xn),且X1>0,求证:数列{1/Xn}是等差数列

X(n+1)=2xn/(xn+2)两边转化为倒数得到1/X(n+1)=(xn+2)/2xn1/X(n+1)=1/2+1/xn1/X(n+1)-1/xn=1/2公差为1/2的等差数列

设X1=1,Xn=1+(Xn-1/(1+Xn-1)),n=1,2,…,试证明数列{Xn}收敛,并求其极限

极限为0.5*(1+根号5).证明:设f(x)=1+(Xn-1/(1+Xn-1)),对f(x)求导,得导数为正,f(x)单调递增,又f(x)=1+(Xn-1/(1+Xn-1))小于2,有上界.利用单调

已知数列{Xn}满足Xn+1=Xn^2+Xn,X1=a(a-1),数列{Yn}满足Yn=1/(Xn+1),设Pn=X/(

列{Xn}满足Xn+1=Xn^2+Xn,X1=a(a-1),数列{Yn}满足Yn=1/(Xn+1),设Pn=X/(Xn+1),Sn=Y1+Y2+...+Yn,则aSn+Pn=_1____

设数列{ Xn } 满足│Xn+1-Xn│≤k│Xn-Xn-1│,n=2,3,...(0

这个显然吗.因为设:yn=│Xn+1-Xn│,n=1,2,...因为(yn+1)/yn≤k

设0Xn=(Xn-1)*[1-(Xn-1)]*[1-(Xn-1)-(Xn-1)^2]=-----=X1*[1-X1]*[

收敛好证,极限难求啊!点击图片有收敛证明

已知数列xn满足x1=4,x(n+1)=(xn^2-3)/(2xn-4)

x(n+1)-3=(x2n-6xn+9)/(2xn-4)=(xn-3)2/2(xn-2)=(xn-2-1)2/2(xn-2)x(n+1)-3=(xn-2)/2-1+1/2(xn-2)≥1-1=0(xn

数列满足x1=1,x2=2/3,且1/xn-1+1/xn+1=2/xn(n>=2),则xn等于多少?

1/xn-1+1/xn+1=2/xn移项得:1/xn-1/x(n-1)=1/x(n+1)-1/xn{1/xn}为等差数列.1/x1=11/x2=3/2公差d=3/2-1=1/21/xn=1/x1+(n

设数列{xn}满足xn+1=xn/2+1/xn,X0>0,n=0,1,2,3,...证明数列{xn}极限存在并求出其极限

注意到x(n+1)>=2√(xn/2*1/xn)=√2,且x(n+1)-xn=1/xn-xn/2=(2-xn^2)/(2xn)

设数列{Xn}、{Yn}、{Zn}满足Xn

不能确定.举个实例,令Xn=常数-1,Zn=常数1,若Yn=sin(n),则Yn的极限就不存在.因为它不能确定于一个定值.

数列{Xn}的递推公式给出Xn+1=0.5(Xn+9/Xn),X1=1求{Xn}通项

X(n+1)-3=(Xn-3)^2/(2*Xn);X(n+1)+3=(Xn+3)^2/(2*Xn);[X(n+1)-3]/[X(n+1)+3]=((Xn-3)/(Xn+3))^2(Xn-3)/(Xn+

设数列{Xn}满足x1=10,lgXn+1=1+lgXn,求通项Xn.

lgxn=lg(10xn-1)吧.xn=10xn-1=10^(n-1)x1=10^n

已知数列{Xn}满足x1=1/2,xn+1=1/(1+xn),n∈N+,证明:|xn+1-xn|≤1/6*(2/5)^n

当n=1时|X2-X1|=1/6成立当n≥2时易知0<Xn-1<1所以1+Xn-1<2所以Xn=1/(1+Xn-1)>1/2又有|Xn+1-Xn|=|1/(1+Xn)-1/(1+Xn-1)|=|Xn-

数列满足x1=1,x2=2/3,且1/xn-1+1/xn+1=2/xn(n>=2),则xn等于多少

已知1/X(n-1)+1/X(n+1)=2/Xn可知{1/Xn}为等差数列设An=1/XnA1=1公差d=1/X2-1/X1=1/2所以An=A1+(n-1)d=1+1/2(n-1)=1/2(n+1)

设数列{ Xn}满足0

当n>=2时,0

已知数列{xn}满足x1=3,x2=x1/2,...,xn=1/2(xn-1+xn-2),n=3,4,...,则xn等于

以下用^b表示b次方.x(n)=(x(n-1)+x(n-2))/2,两边减x(n-1)得x(n)-x(n-1)=(x(n-1)-x(n-2))*(-1/2)所以{x(n)-x(n-1)}是以x(2)-

数列{Xn}中,X1>0,a>0,Xn+1=1/2(Xn+a/Xn).

强烈要求加分.这个就是差分方程,关于他的解都有定论Xn+1-根号a=1/2(根号Xn-根号(a/Xn))^2Xn+1+根号a=1/2(根号Xn+根号(a/Xn))^2(Xn+1-根号a)/(Xn+1+