设数列{an}满足a1 3a2 3²a3 - 3n-1an n3

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 21:31:38
设数列{an}满足a1 3a2 3²a3 - 3n-1an n3
设数列an=n3+Xn(n属于N),且满足a1

1)、如果原题是数列an=n∧3+Xn(n属于N),且满足a1(n-1)∧3-n∧3所以当原题为数列an=n∧3+Xn(n属于N)时x取值范围:x>1∧3-2∧3=-72)、如果原题是数列an=3*n

已知数列{an}满足a

由an+1+an−1an+1−an+1=n可得an+1+an-1=nan+1-nan+n∴(1-n)an+1+(1+n)an=1+n∴an+1=n+1n−1an−n+1n−1=1n−1(an−1)×(

设数列满足a1=2,an+1-an=3•22n-1

(Ⅰ)由已知,当n≥1时,an+1=[(an+1-an)+(an-an-1)+…+(a2-a1)]+a1=3(22n-1+22n-3+…+2)+2=22(n+1)-1.而a1=2,所以数列{an}的通

若数列{an}满足a

由an+1=an+2n,得an+1-an=2n,∴n≥2时,a2-a1=2,a3-a2=4,…,an-an-1=2(n-1),以上各式相加,得an-a1=(n-1)(2n-2+2)2=n2-n,∵a1

数列{an}满足a

∵an+an+1=12(n∈N*),a1=−12,S2011=a1+(a2+a3)+(a4+a5)+…+(a2010+a2011)=-12+12+…+12=−12+12×1005=502故答案为:50

设数列{an}满足:a1+a2/2+a3/3+a4/4……+an/n=An+B,其中A、B为常数.数列{an}是否为等差

记Sn=a1+a2/2+a3/3+a4/4……+an/n=An+B,则a1=S1=A+B,当n>=2时,an/n=Sn-S(下标n-1)=An+B-[A(n-1)+B]=A,an=An,所以,an={

设b>0,数列an满足a1=b,an=nban-1/an-1+n-1(n≥2)求数列an通向公式.

an=nba(n-1)/(a(n-1)+n-1)an.a(n-1)+(n-1)an=nba(n-1)1+(n-1)[1/a(n-1)]=nb(1/an)(n-1)(1/a(n-1)+[1/(1-b)]

设数列{an}满足:a1=1,an+1=3an,n∈N+.

(Ⅰ)由题意可得数列{an}是首项为1,公比为3的等比数列,故可得an=1×3n-1=3n-1,由求和公式可得Sn=1×(1−3n)1−3=12(3n−1);(Ⅱ)由题意可知b1=a2=3,b3=a1

设数列an满足a1=2 an+1-an=3-2^2n-1

(1)根据题意,有An=(An-An-1)+(An-1-An-2)+…+(A2-A1)+A1=3-2^(2n-3)+3-2^(2n-5)+…+(3-2^3)+2再用分组求和法:=3n-【2^(2n-3

已知数列An满足An>0,其前n项和为Sn为满足2Sn=An的平方+An(1)求An(2)设数列Bn满足An/2的n次方

(1)2Sn=an^2+an2Sn-1=a(n-1)^2+a(n-1)2an=2Sn-2Sn-1=an^2-a(n-1)^2+an-a(n-1)an^2-a(n-1)^2=an+a(n-1)[an+a

设数列{an}满足:存在正数M,对一切n有

A2=|a2-a1|A3=|a2-a1|+|a3-a2|...以此类推,显然An是一个单调递增的数列因为单调增的有界数列必收敛,所以An收敛n->∞时,数列An的极限为b|an-a(n-1)|=An-

设数列{an}的通项公式为an=n2+λn(n∈N*)且{an}满足a1

利用作差法即可a(n+1)-a(n)=(n+1)²+λ(n+1)-[n²+λn]=2n+1+λ由已知条件,{an}是递增数列∴2n+1+λ>0恒成立∵2n+1+λ的最小值是2*1+

设b>0,数列an满足a1=b,an=nban-1/an-1+n-1(n≥2)求数列an通向公式

稍等,题目不太清楚,能把数列的下标用括号括起来吗,这样容易弄混.再答:an=nba(n-1)/[a(n-1)+(n-1)]ana(n-1)=nba(n-1)-(n-1)an∵an≠0∴上式等号两边同时

设数列{an}是首项为1000,公比为十分之一的等比数列,数列{bn}满足

an=1000*(1/10)^(n-1)=10^3*10^(1-n)=10^(4-n)lgan=4-nbk=lga1+lga2+...+lgak=3+2+...+4-k=(3+4-k)*k/2=(7-

设数列{an}满足an+1/an=n+2/n+1,且a1=2

1、a(n+1)/an=(n+2)/(n+1)a(n+1)/(n+2)=an/(n+1)设cn=an/(n+1)则c(n+1)=a(n+1)/(n+2),且c1=a1/(1+1)=1即c(n+1)=c

设数列{ Xn}满足0

当n>=2时,0

设数列{an}满足a1=2,an+1-an=3·2^(2n-1)

由递推式有a2-a1=3*2a3-a2=3*2*4a4-a3=3*2*4^2.an-a(n-1)=3*2*4^(n-2)累加得an-a1=2*4^(n-1)-8得an=2*4^(n-1)-6于是bn=

设数列an

解题思路:第三问,利用“放缩法”(放大为能求和的形式,且求和后满足要证的不等式),关键是要“从第三项开始放大”(这是被题目的结论逼出来的)。n=1或2的情况单独证明(说明).解题过程:

设数列{an},{bn},满足an=[lg(b1)+lg(b2)+...+lg(bn)]/n,证明{an}为等差数列的冲

=====啊,等等再问:?怎么了?你会不?再答:马上再问:大哥~麻烦快点吧~急死我了~~~~~~~~~~~再答:①充分性,即:由“{bn}为等比数列”推出“{an}为等差数列”设bn公比为q,∵b1>