设方程F(x z,y z)=0,确定了函数z=z(x,y)求z对x的倒数

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 15:55:11
设方程F(x z,y z)=0,确定了函数z=z(x,y)求z对x的倒数
z=f(x,y) xy+yz+xz=1 ,求dz

dz=(∂z/∂x)dx+(∂z/∂y)dyxy+yz+xz-1=0设g(x,y,z)=xy+yz+xz-1  ∂g/∂x=y+

设由方程xy+yz+xz=1,确定函数z=f(x,y),求∂2z/∂(x^2)

y+y∂z/∂x+z+x∂z/∂x=0∂z/∂x=-(y+z)/(x+y)∂2z/∂x2=【∂

设z=z(x,y)由方程xy+yz-e^xz=0确定,则dz=

可以使用全微分公式求解,对方程分别对x,y求偏导,可得:偏Z偏X=1/(e^yz-1);偏Z偏Y=[z(e^yz)-z-x]/[y-y(e^yz)];dz=(偏z偏x)dx+(偏z偏y)dy;电脑不好

f(x,y,z)=yz+xz使得,y^2+z^2=1,yz=3,求f最大值

f(x,y,z)=yz+xz使得,y^2+z^2=1,yz=3令F(x,y,z)=yz+xz+a(y²+z²-1)+b(yz-3)Fx=z=0Fy=z+2ay+bz=0Fz=y+x

设方程xz+yz+xy=e的定函数z=z(x,y),求dz

两边同时微分zdx+xdz+zdy+ydz+xdy+ydx=0(x+y)dz+(y+z)dx+(z+x)dy=0dz=-[(y+z)dx+(z+x)dy]/(x+y)

设函数z=z(x,y)由方程xz^2+yz=1所确定,则dz/dx=?

我的答案在图片里,你单击一下图片可以看得更清楚.

设 z=xyf(y/x),f(u)可导,则xZ'x+yZ'y=?

Z'x=-yf'(y/x)y/x^2xZ'=-y^2f'(y/x)/xZ'y=xf'(y/x)1/xyZ'y=yf'(y/x)xZ'x+yZ'y=-y^2f'(y/x)/x+yf'(y/x)=y(x-

设f(x,y,z)=x.arcsiny+yz^2+zx^2,求f(xz),f(yz),f(zz)

由于f'(x)=arcsiny+2xz则f“(xz)=2x;同理,f'(y)=x/√(1-y²)+z²则f"(yz)=2z;f'(z)=2yz+x²则f"(zz)=2y

设由方程xy+yz+xz=1,确定函数z=f(x,y),求∂^2z/∂x^2

y+y∂z/∂x+z+x∂z/∂x=0∂z/∂x=-(y+z)/(x+y)y∂2z/∂x2+2ͦ

设z=z(x,y)是由方程f(xz,y+z)=0所确定的隐函数,求dz.

df=f1*d(xz)+f2*d(y+z)=f1*(z*dx+x*dz)+f2*(dy+dz)=0dz=-(z*f1*dx+f2*dy)/(x*f1+f2)其中f1和f2分别为f这个二元函数对第一个和

设函数z(x,y)由方程z-f(2x,x+y,yz)=0确定,其中f具有连续的偏导数,求dz

设fi为f对第i个变量的偏导,i=1,2,3dz-f1(2x,x+y,yz)*2dx-f2(2x,x+y,yz)(dx+dy)-f3(2x,x+y,yz)*(ydz+zdy)=0==>dz=((2f1

设x,y,z∈R+,xy+yz+xz=1,证明不等式:(xy)^2/z+(xz)^2/y+(yz)^2/x+6xyz≥x

左式可化为[(xy)^3+(xz)^3+(yz)^3]/xyz+6xyz;然后[(xy)^3+(xz)^3+(yz)^3]/xyz>=3xyz(这一步是将分子利用(a+b+c)>=3*(abc)^(1

求隐函数xy+yz-xz=0所确定的函数z=f(x,y)的偏导数?

 再问:这么简单?再答:是啊!再问:好吧。。。︶︿︶你是老师还是学生?再答:老师再问:。。。。。。希望您没带过我的高数再答:呵呵,我高中老师,大学的时候学习这个

z=z(x,y)由方程x=f(xz,yz)确定其中f具有一阶连续偏导数求dz

x=f(xz,yz)两边对x求导:1=f1(z+x∂z/∂x)+f2(y∂z/∂x)∂z/∂x=(1-zf1)/(xf1+yf2

设x,y,z≥0,且x+y+z=1,求证:0≤xy+yz+xz-2xyz≤7/27

因为所证式子及已知中x,y,z可以轮换,即性质等价,所以不妨设x>=y>=z>=0;由x+y+z=1得z=yz+xz+(1/3)xy>=0x=1,y=z=0时可取等,左边得证.又xy+yz+xz-2x

解方程组:1、(x+2y-z)^2+(z-x)^2=0 2、xz^2+yz-5根号下(xz^2+yz+9)+3=0

(x+2y-z)^2+(z-x)^2=0所以x+2y-z=0,z-x=0x=z所以2y=0,y=0代入xz^2+yz-5√(xz^2+yz+9)+3=0x^3-5√(x^3+9)+3=0(x^3+9)