设曲面z=x² y²(0≤z≤1),则二重积分zdS等于

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 21:15:59
设曲面z=x² y²(0≤z≤1),则二重积分zdS等于
曲面z=x^2+y^2 被平面z=1 z=2所截曲面面积

-(pi*(5*5^(1/2)-27))/6另附Matlab程序段:%此程序为计算空间中给定的曲面r(u,v)的面积clearall;clc;symsuv;%{设置曲面的向量形式r(u,v)=分量函数

计算曲面积分∫∫∑ z^2 dS其中 ∑为柱面x^2+y^2=4 介于0≤z≤6的部分

考虑yz面Σ₁:x=√(4-y²)或Σ₂:x=-√(4-y²)dx/dy=-y/√(4-y²)dx/dz=0∫∫Σz²dS=2∫∫Σ&#

设曲面∑:x^2/a^2+y^2/b^2+z^2/c^2=1上的点(x,y,z)处的切平面为π,计算曲面积分∫∫∑1/λ

对曲面在第一象限内的部分,设x=a*r*costy=b*r*sint则z=c*sqrt(1-r^2)代入计算得到8*pi/3*abc*(1/a^2+1/b^2+1/c^2)再问:麻烦您写一下具体步骤呗

设函数z=z(x,y)由方程x^2+y^3-xyz^1=0确定,求z/x,z/y

x²+y³-xyz=0,z=(x²+y³)/(xy)=x/y+y²/x;故z/x=1/y+y²/x²z/y=x/y²+y

设变量x,y,z满足约束条件:x+y+z=1,0≤x≤1,0≤y≤2,3y+z≥2,求F=3x+6y+4z的最大值.

由题得:z=1-x-y代入3y+z》2得:x-2y+1《0则,x、y属于由,0≤x≤1,0≤y≤2,x-2y+1《0所围成的直角梯形中,四个顶点坐标分别为:(0,1/2)、(1,1)、(1,2)、(0

设x,y,z满足约束条件组x+y+z=13y+z≥20≤x≤10≤y≤1,求u=2x+6y+4z的最大值和最小值(  )

约束条件组x+y+z=13y+z≥20≤x≤10≤y≤1,即2y−x≥10≤x≤10≤y≤1,目标函数u=2x+6y+4z即u=-2x+2y+4.如图:作出可行域(6分)目标函数:u=-2x+2y+4

微积分二重积分的应用:求立体的体积 求由曲面z=xy,x+y+z=1,z=0所围成立体的体积.

借用下:求两个曲面z=2-4x^2-9y^2与z=√(4x^2+9y^2)所围立体的体积V设x=rcosθ/2,y=rsinθ/3,r>0,则原来的两个曲面方程化为z=2-r²,z=r,它们

微积分.计算曲面 z=x^2+y^2,y=1,z=0,y=x^2,围成的立体体积.

个人认为:x属于-1到1,y属于x^2到1.所求体积为∫从-1到1∫从x^2到1(x^2+y^2)dydx.不知道对不对~

计算由曲面z=1-x^2-y^2与z=0所围成的立体体积

这题用二重积分,三重积分都可求得.

绘制三维曲面z=sin(x)cos(y)图中的z>0.35 部分图形,其中0≤x,y≤2π.用matlab画

请问你这是球坐标还是直角坐标?clcclear[x,y]=meshgrid(0:0.01*pi:2*pi);z=sin(x).*cos(y);surf(x,y,z);[T,P,R]=cart2sph(

设x,y,z是正实数,且x+y+z=1.求证:(1)xy+yz+xz≤1/3,(2)x√y+y√z+z√x≤√3/3.

x+y+z=1,得(x+y+z)²=x²+y²+z²+2(xy+yz+xz)=1又x²+y²≥2xy,x²+z²≥2xz

设球面∑:x^2+y^2+z^2=1,则曲面积分∫∫(x+y+z+1)^2dS=

∵x²+y²+z²=1==>z=±√(1-x²-y²)令S1:z=√(1-x²-y²),S2:z=-√(1-x²-y&#

设s为球面x^2+y^2+z^2=1,求曲面积分∫∫(x^2+y^2+z^2-2z)ds的值

不需要楼上那么麻烦啊,而且楼上也做错了首先积分曲面关于xoy面对称,对于-2z这个奇函数,积分结果为0.原式=∫∫(x^2+y^2+z^2)ds=∫∫1ds=4π1、第一类曲面积分可以用曲面方程化简被

求平面x+y+z=2与曲面x^2-2y^2+2z^2=1(x,y,z>0)之间的最短距离

/>曲面的切平面为xXo-2yYo+2zZo=1求最短距离,则切平面与平面x+y+z=2平行即Xo/1=-2Yo/1=2Zo/1即Xo=-2Yo=2Zo即2xZo+2yZo+2zZo=1即2Zo(x+

求曲面z=x+y z=xy x+y=1 x=0 y=0所围闭区域体积!

这道题目最关键是要明白各个面的位置关系.大概如下:在x+y=1,x=0,y=0圈起来的空间内,曲面z=xy在平面z=x+y之下(∵xy≤x≤x+y),因而立体在xoy平面上的投影为x+y=1,x=0,

求曲面z=x+y z=xy x+y=1 x=0 y=0所围闭区域体积

这道题目最关键是要明白各个面的位置关系.大概如下:在x+y=1,x=0,y=0圈起来的空间内,曲面z=xy在平面z=x+y之下(∵xy≤x≤x+y),因而立体在xoy平面上的投影为x+y=1,x=0,

设x,y,z≥0,且x+y+z=1,求证:0≤xy+yz+xz-2xyz≤7/27

因为所证式子及已知中x,y,z可以轮换,即性质等价,所以不妨设x>=y>=z>=0;由x+y+z=1得z=yz+xz+(1/3)xy>=0x=1,y=z=0时可取等,左边得证.又xy+yz+xz-2x