设曲面z=x² y²(0≤z≤1),则二重积分zdS等于
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 21:15:59
-(pi*(5*5^(1/2)-27))/6另附Matlab程序段:%此程序为计算空间中给定的曲面r(u,v)的面积clearall;clc;symsuv;%{设置曲面的向量形式r(u,v)=分量函数
考虑yz面Σ₁:x=√(4-y²)或Σ₂:x=-√(4-y²)dx/dy=-y/√(4-y²)dx/dz=0∫∫Σz²dS=2∫∫Σ
对曲面在第一象限内的部分,设x=a*r*costy=b*r*sint则z=c*sqrt(1-r^2)代入计算得到8*pi/3*abc*(1/a^2+1/b^2+1/c^2)再问:麻烦您写一下具体步骤呗
x²+y³-xyz=0,z=(x²+y³)/(xy)=x/y+y²/x;故z/x=1/y+y²/x²z/y=x/y²+y
由题得:z=1-x-y代入3y+z》2得:x-2y+1《0则,x、y属于由,0≤x≤1,0≤y≤2,x-2y+1《0所围成的直角梯形中,四个顶点坐标分别为:(0,1/2)、(1,1)、(1,2)、(0
约束条件组x+y+z=13y+z≥20≤x≤10≤y≤1,即2y−x≥10≤x≤10≤y≤1,目标函数u=2x+6y+4z即u=-2x+2y+4.如图:作出可行域(6分)目标函数:u=-2x+2y+4
借用下:求两个曲面z=2-4x^2-9y^2与z=√(4x^2+9y^2)所围立体的体积V设x=rcosθ/2,y=rsinθ/3,r>0,则原来的两个曲面方程化为z=2-r²,z=r,它们
个人认为:x属于-1到1,y属于x^2到1.所求体积为∫从-1到1∫从x^2到1(x^2+y^2)dydx.不知道对不对~
这题用二重积分,三重积分都可求得.
surf(x,y,z)
请问你这是球坐标还是直角坐标?clcclear[x,y]=meshgrid(0:0.01*pi:2*pi);z=sin(x).*cos(y);surf(x,y,z);[T,P,R]=cart2sph(
x+y+z=1,得(x+y+z)²=x²+y²+z²+2(xy+yz+xz)=1又x²+y²≥2xy,x²+z²≥2xz
∵x²+y²+z²=1==>z=±√(1-x²-y²)令S1:z=√(1-x²-y²),S2:z=-√(1-x²-y
不需要楼上那么麻烦啊,而且楼上也做错了首先积分曲面关于xoy面对称,对于-2z这个奇函数,积分结果为0.原式=∫∫(x^2+y^2+z^2)ds=∫∫1ds=4π1、第一类曲面积分可以用曲面方程化简被
/>曲面的切平面为xXo-2yYo+2zZo=1求最短距离,则切平面与平面x+y+z=2平行即Xo/1=-2Yo/1=2Zo/1即Xo=-2Yo=2Zo即2xZo+2yZo+2zZo=1即2Zo(x+
这道题目最关键是要明白各个面的位置关系.大概如下:在x+y=1,x=0,y=0圈起来的空间内,曲面z=xy在平面z=x+y之下(∵xy≤x≤x+y),因而立体在xoy平面上的投影为x+y=1,x=0,
这道题目最关键是要明白各个面的位置关系.大概如下:在x+y=1,x=0,y=0圈起来的空间内,曲面z=xy在平面z=x+y之下(∵xy≤x≤x+y),因而立体在xoy平面上的投影为x+y=1,x=0,
因为所证式子及已知中x,y,z可以轮换,即性质等价,所以不妨设x>=y>=z>=0;由x+y+z=1得z=yz+xz+(1/3)xy>=0x=1,y=z=0时可取等,左边得证.又xy+yz+xz-2x
x²+y²=1柱面.