设曲面∑是上半球面:x² y² z²=R²,曲面∑1是∑在第一卦限的部分,则有
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 12:31:03
为啥没有下面的部分呢?条件不足.把问题修正一下.计算曲面积分∫∫Σx²dS,其中Σ为上球面z=√(1-x²-y²),x²+y²=1被z=-h所截得的部
再问:谢谢(不过最后一步写错了,5/2还要乘2π/3
把球面参数化x=2sinucosvy=2sinusinvz=2cosu|J|=2^2*sinv=4sinv0再问:我这样理解对吗:因为这个是球面,所以只要对θ,φ求积分,r是常数?还有如果就在Oxyz
dz/dx=-x/√(4-x²-y²),dz/dy=-y/√(4-x²-y²)dS=√[1+(dz/dx)²+(dz/dy)²]dxdy=2
不用那么麻烦把曲面公式代入被积函数中∫∫(x^2+y^2+z^2)ds=∫∫a^2ds=(a^2)*4πa^2=4πa^4再问:但答案是8πa^4再答:答案是4πa^4,我用不同的方法算了一遍,请看:
再问:还没学高斯系数额,就用第一类曲面积分算法可以吗再答:这就是第一类曲面积分的算法。请参照二重积分中,计算曲面面积的方法,其中就有高斯系数。再问:请问倒数第二部a^4怎么出来变a^3了再答:这种解法
x²+y²+z²=2x+2y+2z(x-1)²+(y-1)²+(z-1)²=3令x=1+u,y=1+v,z=1+w==>Σ':u²
∫∫∫(x^2+y^2+z^2)dxdydz=∫(0,2π)dθ∫(0,π/2)sinφdφ∫(0,a)r^4dr=(2π/5)a^5
【分析】设Γ是一条空间曲线,Π是一张平面,对于Γ上任意一点P,令Π(P)是点P在平面Π上的投影点,即Π(P)∈Π,向量Π(P)P⊥Π.所有投影点的集合称为Γ在平面Π上的投影曲线.(1)两曲面在xoy面
令P=xy²,Q=yz²,R=zx²∵αP/αx=y²,αQ/αy=z²,αR/αz=x²∴由高斯公式,得原式=∫∫∫(αP/αx+αQ/α
伙计这个(x-a)^2+(y-b)^2+(z-c)^2是球面吗?不是的,它是屁.令(x-a)^2+(y-b)^2+(z-c)^2=R^2才是,首先要加一个平面z=c取下侧面,才能用高斯公式原式=∫∫∫
在半球面∑上添加圆面S:(x²+y²=1,z=0),使之构成封闭曲面V=∑+S.∵∫∫x³dydz+y³dzdx+z³dxdy=0(∵z=0,∴dz=
好好学高数,这是以后学专业课的基础,不要网上问了,有人回答答案也是似是而非的,不会了问学霸同学,或者老师答疑的时候去问问再问:TT身边没有学霸。。课已经讲完了唉再答:x²+y²=9
∵x²+y²+z²=1==>z=±√(1-x²-y²)令S1:z=√(1-x²-y²),S2:z=-√(1-x²-y
球面x^2+y^2+z^2=9∫(闭合)x^2ds=(1/3)∮3x^2ds因为积分曲面为球面,根据对称性有,∮x^2ds=∮y^2ds=∮z^2ds=(1/3)∮(x^2+y^2+z^2)ds因为是
面积元素ds=2/(4-x^2-y^2)^1/2dxdy∫∫(x^2+y^2+z^2)dS=x^2+y^2+z^2)dS=∫∫4.2/(4-x^2-y^2)^1/2dxdy极坐标换元:∫∫(x^2+y
不需要楼上那么麻烦啊,而且楼上也做错了首先积分曲面关于xoy面对称,对于-2z这个奇函数,积分结果为0.原式=∫∫(x^2+y^2+z^2)ds=∫∫1ds=4π1、第一类曲面积分可以用曲面方程化简被
根据球面的对称性,所以对关于x,y,z的奇函数的积分为0所以∫∫xdS=∫∫ydS=∫∫zdS=0所以原积分=∫∫(x+y+z+1)dS=∫∫dS=球面的表面积=4π