设有三阶线性方程组x1 x2
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 10:53:37
"三维向量a1,a2是齐次线性方程组(A-I)x=0的一个基础解系"这句话已经告诉你两个特征值是1,对应的特征向量是a1,a2再结合“三阶矩阵A的行列式|A|=-1”得到余下那个特征值是-1(当然也有
还是用消元啊去百科查查高斯消元法地址:
若存在一组不全为零的数k1.k2,...,ks满足k1a1+k2a2+...+ksas=0则称向量组a1,a2,...,as线性相关再问:向量组的线性相关与向量的线性相关一样吗?再答:一回事.说向量的
n-r个向量,当r=n时方程组只有零解
知识点:齐次线性方程组AX=0的基础解系含n-R(A)个解向量1.由已知,AX=0的基础解系可由BX=0的基础解系线性表示所以n-R(A)=R(B)正确.2.显然错误:秩的大小不能决定解,只能决定线性
齐次线性方程组的解是线性空间,设Ax=0,BX=0的解空间的维数分别是a,b因为线性空间的唯一区别在于维数,所以a
利用矩阵的计算原方程组可化为如下矩阵11115111151111512-14-201-23701-23-72-3-1-5-2===>0-5-3-7-12===>00-138-473121100-2-1
(3)正确同解方程组的基础解系所含向量的个数相同所以有n-r(A)=n-r(B)即有r(A)=r(B)(1)正确此时n-r(A)=r(B)再问:能把不对的选项也说明一下吗?再答:那显然不对秩的大小并不
你看一下~我觉得少一个条件…
/>设A为系数矩阵增广矩阵B=(A,b)=a11a12……a1n-1a1na21a22……a2an-1a2n……an1an2……annn-1ann因为|B|=|aij|不等于零所以r(B)=n所以A列
111+λλ0λ-λ3-λ00-λ×λ-3λ-λ×λ-2λ+3上面是增广矩阵的化简形式.如果λ=0,则矩阵为:111000030003无解.故无解时,λ=0如λ不等于0且λ不等于-3时,有唯一解.如果
B不为0,说明r(B)>=1那个集空间的秩为n-r(B)=3-R(B)
这题选C
3,6,8,11设四个数为a,b,c,da+b+c=22,a+b+d=20,a+c+d=17,b+c+d=25四个等式相加得3a+3b+3c+3d=84所以a+b+c+d=28,分别减去上面四个式子得
首先,x1,x2,……xn不可能全不为1或-1,否则|x1x2……xn|>|x1|+|x2|+……+|xn|>n若n为奇数,则x1,x2,……xn除了有限个绝对值不为1的数外,其余都为1和-1而这些绝
分别称方程(1),(2),(3)方程(1)+(2)得x1+x3=-a-b与(3)联立得x1=(-a-b-c)/2;x3=(-a-b+c)/2x2=x1+a=(a-b-c)/2再问:大哥。。用行列式解啊
R(A)=3说明AX=0的基础解系含4-3=1个解向量A(a1-(a2+a3)/2)=Aa1-(Aa2+Aa3)/2=b-(b+b)/2=0所以a1-(a2+a3)/2是AX=0的解所以它就是基础解系