设样本X1,X2,X3...Xn来自总体X,X∽P(λ)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 23:56:49
设样本X1,X2,X3...Xn来自总体X,X∽P(λ)
概率论与数理统计:设总体X~N(0,0.25),x1,x2,x3...xn为来自总体的一个样本,见下图;请给出计算过程,

a=4..再问:��Ĺ����>再答:��������ֲ�Ҫ�����DZ�׼��̬�ֲ�Xi/0.5~N(0,1)Xi^2/0.25=a*Xi^2a=4

设X1,X2,...,X6为来自正态总体N(0,σ^2)的一个样本,随机变量Y=c[(X1+X2+X3)^2+(X4+X

服从卡方分布,可以从x2的定义中知道,自由度为6,因为从x1到x6c的值不太清楚.

概率论题目设X1,X2,…,x6为来自正态总体N(0,o^2)的一个样本,随机变量Y=c[(X1+X2+X3)^2+(X

服从卡方分布.χ²√c(x1+x2+x3)属于标准正态分布D(√c(x1+x2+x3))=3cσ²=1c=1/3σ²自由度为2.再问:c前面那个符号是什么??再答:根号√

设X1X2X3X4是取自总体X~N(0,o^2)DE的样本,则统计量y=(x1+x2)^2/(x3-x4)^2服从自由度

若X1,X2,X3,X4独立,(X1+X2)服从N(0,8),则(1/8)(X1+X2)^2服从卡方1;(X3-X4)服从N(0,8),则(1/8)(X3-X4)^2服从卡方1;当C=1/8时,CY服

)设X服从N(0,1),(X1,X2,X3,X4,X5,X6)为来自总体X的简单随机样本,Y=(X1+X2+X3+)^2

(X1,X2,X3,X4,X5,X6)为来自总体X的简单随机样本所以(X1+X1+X3)~N(0,3)(X4+X5+X6)~N(0,3)所以而1/√3(X1+X1+X3)~N(0,1);1/√3(X4

数学算平均数 方差如果样本 x1 .x2.x3.xn的平均数是x 方差是M 那么样本3x1+2 3x2+2 3x3+2

平均数是3x方差是9M再问:为什么呀再答:失误……平均数是3x+2因为x1.x2.x3........xn的平均数是x,所以x1.x2.x3........xn的和是nx3x1+23x2+23x3+2

设总体X~N(0,1),从此总体中取一个容量为6的样本X1,X2...X6,设Y=(X1+X2+X3)的平方+(X4+X

根据线性关系有:(X1+X2+X3)~N(0,3),:(X4+X5+X6)~N(0,3),所以(1/3)*[(X1+X2+X3)^2(的平方)]~X(1)(X是卡方分布符号),(1/3)*[(X4+X

关于线性代数问题,设二次型f(x1,x2,x3)=x1*x1+2*x2*x2+x3*x3+2*t*x1x2+2*x1*x

(1)二次型的矩阵A=1t1t20101由A奇异知|A|=0.而|A|=-t^2所以t=0(2)此时A=101020101|A-λE|=-λ(λ-2)^2.所以A的特征值为λ1=0,λ2=λ3=2.对

设总体X服从正态分布N(u,σ^2) ,X1,X2,X3,...,Xn 是它的一个样本,则样本均值A的方差是 ? (需要

正态分布的规律,均值X服从N(u,(σ^2)/n)因为X1,X2,X3,...,Xn都服从N(u,σ^2),正太分布可加性X1+X2...Xn服从N(nu,nσ^2).均值X=(X1+X2...Xn)

设 X1,X2,X3.Xn为来自总体 X的样本,已知总体的分布密度函数为:[f(

亲爱的同学,你的题目抄写错误或图片拍摄不清晰,老师无法清楚理解题意,请重新核实你的问题再提问,谢谢!

设X1,X2,X3……,Xn为总体X的一个样本,X的密度函数f(x)=βx^(β-1),0

1、矩估计EX=∫xf(x)dx=∫xβx^(β-1)dx=β/(β+1)=x(平均)--β=x(平均)/(1-x(平均))2、最大似然估计L(β)=TTβxi^(β-1)-->LnL(β)=nLnβ

设X1,X2,X3是方程X^3+px+q=0de三个根,则|x1 x2 x3|= |x3 x1 x2| |x2 x3 x

算出行列式的值,再整理成只和x1+x2+x3,x1x2+x2x3+x3x1,x1x2x3这三项有关的形式,利用三次方程韦达定理带入系数可求.

设总体X~N(12,4),x1,x2,x3……x16为样本,X头上一横为样本均值,计算P{丨样本均值-12丨>1}

4是方差?x1+..x16~N(12*16,4*16)均值-12=(x1+..x16-12*16)/16P(|均值-12|>1)=P(|x1+..x16-12*16|>16)即求16个样本和的分布同其

1 总体X~N(2,4),X1,X2,X3,X4为样本,则(X1+X2+X3+X4)/4~( )

因为正态分布具有再生性,就是由这些样本经过变形组成的样本空间,仍然服从正态分布N(2,4),则E(X)=2,D(X)=4则E[(X1+X2+X3+X4)/4]=1/4[E(X1)+E(X2)+E(X3