设点P是双曲线x方-3分之y方=1上一点,焦点F(2,0),点A(3,2),使

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 11:36:22
设点P是双曲线x方-3分之y方=1上一点,焦点F(2,0),点A(3,2),使
已知双曲线X方/A方-Y方/B方=1(A B大于0)的渐近线方程为y =+-3分之根号3X,若顶点到渐近线的距离为1如题

∵a,b>0,渐近线y=±(b/a)x=±(√3/3)x,b=(√3/3)a.(1),取顶点(a,0),他到y=bx/a的距离=1,即1/a=b/√(a+b).(2),由(1),(2)得a=2,b=2

已知双曲线的方程是16x方-9y方=144

楼主,请看答案对不对再答:�⣺����ã�a=3,b=4,c=5���ԣ�������꣺F1(-5,0)��F2(5,0)�����ʣ�e=c/a=5/3�����߷��̣�y=(4/3)x��y=-

设F1F2是双曲线X方/4减Y方的焦点,点P在双曲线上,且

双曲线X方/4减Y方=1a^2=4b^2=1c^2=a^2+b^2=5设PF1=mPF2=n双曲线定义|m-n|=2a=4且

设F1.F2分别为双曲线a方分之x方-b方分之y方=1的左右焦点,若在双曲线又支上存在点p,满足│PF2│=│F1F2│

.汗,算死我了,楼主你要给分喔!谢谢.是这样的:因为“│PF2│=│F1F2│”所以那里是等腰三角形,所以等腰三角形高是2a.PF1=2a+2c,所以被分成的两个三角形的边为a+c,所以你看被分的两个

已知双曲线x平方-3分之Y方过P(2,1)作直线交双曲线AB两点使P为AB中点,则AB斜率为

A(x1,y1)B(x2,y2)则x1+x2=4y1+y2=2又因为A,B在双曲线上x1^2-y1^1/3=1x2^2-y2^2/3=1两式相减得(x1+x2)(x1-x2)-(y1+y2)(y1-y

点P是双曲线a方分之x方-b方分之y方=1上一点,过点P做Y轴垂线交渐近线于Q,R,且向量PQ×向量PR=17,若焦点

设P(x0,y0)渐进性是y=±b/ax过P的垂线和y=b/ax交与点Q(ay0/b,y0)过P的垂线和y=-b/ax交与点R(-ay0/b,y0)PQ向量=(ay0/b-x0,0)PR向量=(-ay

如图如图,点P是抛物线y=x方上第一象限内的一点,点A的坐标是(3,0),(1)设点P的坐标为(x

⑴S=1/2OA*Y=3Y/2,⑵S是Y的一次函数.∵Y=X^2,∴S=3X^2/2,∴S是X的二次函数.

已知点F1,F2是双曲线x方/a方-y方/b方=1的左右焦点,

四边形F1AF2B是菱形,如图过顶点即圆半径是a利用面积法F1A=√(c²+b²)a*√(c²+b²)=bca²(c²+b²)=b

已知椭圆2a方分之x方加2b方分之y方=1与双曲线a方分只x方减b方分之y方=1有相同焦点,则椭圆离心率为?

椭圆半焦距:2a^2-2b^2双曲线半焦距:a^2+b^2有相同焦点,2a^2-2b^2=a^2+b^2a^2=3b^2椭圆半焦距:c^2=2a^2-2b^2=4b^2椭圆半焦距c=2b椭圆半长轴=根

双曲线x方—24分之y方=1的焦点坐标是

由双曲线方程得a=1,b=根号下24所以c^2=a^2+b^2解得:c=5所以焦点坐标是:f1(-5,0)f2(5,0)

数学圆锥双曲线方程已知双曲线a方分之x方-b方分之y方=1(a>0,b>0)的左右焦点分别为F1.F2,点P在双曲线的右

设PF2=t,则PF1=3t,在直角三角形PF1F2中可得F1F2=根号10t=2c,2a=PF1-PF2=2t,所以a=t,c=2分之根号10t,b=2分之根号6t,a,b用t表示的形式代入原方程,

F1 F2是双曲线x方/a方 - y方/b方 =1 的焦点 若在双曲线上存在P 满足角F1PF2 =60° OP=根号7

求什么方程,是渐近线的吗?若是则根号X+Y=0或根号X-y=0再问:求过程..再答:S三角形PF1F2=b方cot30度=1/2乘2cyy=根号3b方/c-y方/b方+x方/a方=1x方+y方=7a方

已知双曲线C:a方分之x方-b方分之y方=1,的离心率为根号3,右准线方程x=3分之根号3,求双曲线方程.

分析:(1).依题有a^2/c=sqrt(1/3),e=c/a=sqrt(3)得a=1,c=sqrt(3),b=sqrt(2)双曲线方程为x^2-y^2/2=1.(1)(2).设A(x1,y1),B(

双曲线离心率已知双曲线a方分之x方-y方=1的一条准线方程为x=2分之3,则该双曲线的离心率为

因为a^2/c=3/2a^2+b^2=c^2b=1所以3c/2+1=c^22c^2-3c-2=0c1=-1/2(舍去)c2=2a=根号3离心率为3分之2倍根号3

已知双曲线a方分之x方-y方=1的一条准线方程为x=2分之3,则该双曲线的离心率为

²=1所以c²=a²+b²=a²+1a²=c²-1准线x=±a²/c所以a²/c=3/22a²=3c