设直线l过点(-2,0)且与圆x² y²=1相切

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 05:22:01
设直线l过点(-2,0)且与圆x² y²=1相切
1楼第一题 已知直线l过点(-1,0)若点(1,2)到直线l的距离为根号5,则直线l的方程为:第二题 斜率为3且与圆x2

不知道你学没学直线方程,1、用点斜式,设直线方程l:y=k(x+1),用点到直线的距离公式lk-2+kl/根号下k的平方+1=根号5,求出k值-4正负根下15再代入求出l2、圆心(0,0),r=根10

设L直线过点(-2,0),且与圆X的平方加Y的平方等于1相切,则直线L的斜率为

设直线L的斜率为k直线方程为y=k(x+2)即kx-y+2k=0圆心到直线的距离为半径r=|3k|/√(k^2+1)=1解得k=±2√2不懂问我

高数求空间直线方程设直线l在平面π:2x+3y+4z =9上且过点(1,1),若l与xOy平面有最大交角,求直线l的方程

直线l与xOy平面有最大交角,则直线I垂直于平面π与平面xOy的相交直线即2x+3y+4z=9,z=0改写成参数式:x=t,y=(9-2t)/3,z=0设直线L的方程为(x-1)/a=(y-1)/b=

(2005•安徽)设直线l过点(-2,0),且与圆x2+y2=1相切,则l的斜率是(  )

∵直线l过点(-2,0),且与圆x2+y2=1相切由圆得:圆心为(0,0),半径为1∴构成的三角形的三边为:2,1,3,解得直线与x轴夹角为30°的角∴x的倾斜角为30°或150°∴k=±33故选C.

一道高中数学题求解!已知动点过定点P(1,0),且与定直线l x=-1相切 设过点P且斜率为 的直线与曲线M相交于

【函数】让我们从函数的角度来看看吧。抽象一下,把①看成f(y)=0,②看成g(y)=0那么②-①就是g(y)-f(y)=0相当于构造了一个h(y)=g(y)-f(y)而这个h(y)=0现在跳出题目来看

设直线L过点(-2,0)且与圆x²+y²=1相切,则L的斜率是

设直线方程为:y=k(x+2)kx-y+2k=0因为相切,所以圆心到直线的距离=半径=1即d=|2k|/√(k²+1)=14k²=k²+13k²=1k=±√3/

已知一动圆过定点P(1,0),且与定直线l:x=-1相切,点C在l上.设过点P,且斜率为-√3的直

亲爱的同学,你的问题题意不明(“题意不明”的表现为:题目表述不清晰,不能表达完整题意...)请核实你的提问内容,老师会等待你的新回复,

已知动圆过定点P(1,0),且与定直线l:x=-1相切,点C在l上,该动圆圆心轨迹M的方程为y^2=4x设过点P,且斜率

你好假设存在这样的正三角形ABC,设C点得坐标为(-1,m)由于过点P,且斜率为-3^1\2的直线方程为y=-√3(x-1),与轨迹M的方程为y^2=4x联立,可得3x^2-10x+3=0所以|AB|

设直线l过点(-2,0),且与圆x的平方+y的平方=1相切,则x的斜率是?

设直线L=AX+BY+C,过点(-2,0)-2A+C=0,C的平方=4*A的平方,与圆x的平方+y的平方=1相切,圆心到直线的距离为|C|/根号(A的平方+B的平方)=1,所以C平方=A平方+B平方,

设直线l过点M(1,2,3)与z轴相交,且垂直于直线x=y=z.求直线l的方程.

直线l过点M,则设方程:(x-1)/A=(y-2)/B=(z-3)/C因为与z轴相交,故过(0,0,Z0)即有:-1/A=-2/B=(Z0-3)/C=K即,A=-1/KB=-2/KC=(3-Z0)/K

1.求过点P(1,4)且与已知直线y=-2x-1平行的直线l的函数表达式,并画出直线l的图像; 2.设1.中的直线L分别

1.由已知直线y=-2x-1的斜率为-2,得与已知直线y=-2x-1平行的直线l的斜率为-2.由点斜式得过点P(1,4)且与已知直线y=-2x-1平行的直线l的函数表达式为:y-4=-2(x-1)=-

设直线l过点(-2,0),且与圆x∧2+y∧2=1相切,则l的斜率是

设经过点(-2,0)的直线为:y-0=k(x+2),即kx-y+2k=0直线与圆x^2+y^2=1相切,则圆心(0,0)到直线的距离等于圆半径R=1所以:d=|0-0+2k|/√(1+k^2)=R=1

设直线l过点(-2,0) 且与圆x^2+y^2=1相切,则l的斜率是?

y-0=k(x+2)kx-y+2k=0圆心(0,0)袋切线距离等于半径r=1所以|0-0+2k|/√(k²+1)=14k²=k²+1所以k=±√3/3

已知点p(-2,1),直线l:x+y—5=0 求过点p,且与直线l平行的直线方程

因为与直线l:x+y—5=0平行,则直线的斜率k=-1因为过点P(-2,1)则y-1=-1(x+2)y=-x-1

1.直线l过点(2,2)且与圆x^2+y^2-2x=0相切,直线l的方程是

1、x^2+y^2-2x=0可化为:(x-1)^2+y^2=1可得此圆的圆心为(1,0),半径为1当斜率存在时设过点(2,2)的直线为:y=k(x-2)+2可得:|k(1-2)+2|/√(1+k^2)

已知直线l:3x+2y-1=0 ①若直线a与直线l垂直且过点(½-1)求直线a的方程 ②若直线b与直线l平行,

直线l的斜率k=-3/2(1)a垂直l,斜率=-1/k=2/3方程为y+1=(2/3)(x-1/2)2x-3y-4=0(2)b平行l,则b上任意一点(x,y)到直线l的距离为√13则I3x+2y-1I

设直线l过点(-2,0),且与圆x∧2+y∧2=1相切,则l的斜率为

设直线为y=k(x+2);即kx-y+2k=0;则有:d=|2k|/√(k²+1)=1;4k²=k²+1;3k²=1;k²=1/3;k=±√3/3;所

已知点P(2,-1)及直线l:3x+2y-5=0,求:(1)过点P且与l平行的直线方程; (2)过点P且与l垂直的直线方

(1)与l平行的直线方程3x+2y+C=0过P(2,-1)代入6-2+C=0C=4∴直线方程3x+2y+4=0(2)过点P且与l垂直的直线方程2x-3y+C=0过P(2,-1)代入4+3+C=0C=-