设直线与抛物线交于AB两点,已知弦AB=3,点P为抛物线上一点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 03:30:03
抛物线的顶点在原点,焦点在x轴上所以设抛物线方程为y²=2px因为AB过焦点且垂直于x轴,且/AB/=6,说明抛物线上有一点的坐标应该为(p/2,3)将这一点代人到抛物线方程得到9=p
∵A、B都在抛物线y^2=2px上,∴可设A、B的坐标分别为(A^2/(2p),A)、(B^2/(2p),B).∴AB的斜率=(A-B)/[A^2/(2p)-B^2/(2p)]=2p/(A+B). A
焦点为(p/2,0),准线为x=—p/2记两交点坐标为(x1,y1),(x2,y2)则|FP|=x1+p/2|FQ|=x2+p/2(到焦点的距离等于到准线的距离)y1/(x1-p/2)=y2/(x2-
希望帮得到你!不懂在留言!
y=1,x≧2分之一的一条射线么再问:过程?再答:再答:在令方程为零,算一下临界点就可以了再问:虽然看起来不像对的但还是谢谢了
设直线l:y=k(x-1/2)代入y^2=2x,得:k^2x^2-(k^2+2)x+k^2/4=0设A(x1,y1),B(x2,y2)则x1x2=1/4x1+x2=(k^2+2)/k^2y1y2=k^
y²=4x(2x+b)²-4x=04x²+4(b-1)x+b²=0x=[-(b-1)±√(1-2b)]/2A([-(b-1)+√(1-2b)]/2,1+√(1-
y=2x+b(2x+b)^2=4x4x^2+(4b-4)x+b^2=0x1+x2=1-b,x1*x2=b^2/4(x1-x2)^2=(x1+x2)^2-4x1*x2=b^2-2b+1-b^2=1-2b
设A(a^2/(2p),a),B(b^2/(2p),b),D(x,y)OA⊥OBa/(a^2/(2p)*b/(b^2/(2p)=-1ab=-4p^2OD⊥ABy/x*(a-b)/[(a^2-b^2)/
焦点F(0,1)A(x1,y1)B(x2,y2)设直线方程y=kx+1代入x^2=4yx^2-4kx-4=0x1+x2=4k中点的横坐标x=2kk=x/2y1+y2=k(x1+x2)+2=2k^2+2
抛物线内垂直的三角形过P点,也就是焦点,为P/2,所以在P
1)过点(2,0)设A(y1^2/2,y1),B(y2^2/2,y2)圆H过点O,AB为直径,则向量OA·OB=0,即(y1y2)^2/4+y1y2=o得y1y2=0(此时b=0舍去),或者y1y2=
证明:若抛物线顶点(0,0)在圆上我们就要证那么Koa×Kob=-1也就是OA⊥OB设点A和B的坐标分别为(x1,y1)(x2,y2)y2/x2×y1/x1=-1x1x2+y1y2=0这是思路,下面是
∵y=2x+1,∴x=(y-1)/2将x=(y-1)/2代入y²=12x中,得:y²=6(y-1)即:y²-6y+6=0设A(x1,y1),B(x2,y2),则y1+y2
哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈
当直线AB与x轴垂直时,求出AB点的坐标,可证否则,设直线AB的方程为y=k(x-2a),设交于A(m,n)、B(l,k)要证结论即证OA垂直OB即ml+nk=0,(用向量得到).又ml+nk=ml+
由题意,设直线AB的方程为ay=x-2,设A(x1,y1),B(x2,y2),则其坐标满足ay=x-2y2=2px消去x的y2-2apy-4p2=0,则x1+x2=(4+2a2)px1•x2=4p2因