设矩阵A=13*7和B=7*23,请根据straseen矩阵乘法计算矩阵的乘积.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 04:45:49
设矩阵A=13*7和B=7*23,请根据straseen矩阵乘法计算矩阵的乘积.
设B为可逆矩阵,A是与B同阶方阵,且满足A2+AB+B2=0,证明A和A+B都是可逆矩阵.

∵A2+AB+B2=0,∴A(A+B)=-B2,而B可逆,故:|-B2|=(-1)n|B|2≠0,∴|A(A+B)|=|-B2|≠0,∴A,A+B都可逆,证毕.

设A和B为n阶矩阵,且A为对称矩阵,证明B'AB为对称矩阵

证明:因为A是对称矩阵所以A'=A.所以(B'AB)'=B'A'(B')'=B'AB所以B'AB是对称矩阵#

线性代数,(1)设A^2=3E+2B,求矩阵B;(2)设AB=3A+2B,求矩阵B

(1)A^2=3E+2BB=1/2(A^2-3E)=-3/29/2603/27/2-1/25/25/2(2)AB=3A+2B(A-2E)B=3AB=(A-2E)^-1*3A=-3612-4510221

设A,B均为2阶矩阵,A*,B*分别为A,B的伴随矩阵,若|A|=2,|B|=3,则分块矩阵

参考一下再问:有没有更简单的方法?我们好像没学到过那条推论啊。。。QAQ再答:行列式拉普拉斯展开式有没有学过?

设矩阵A,B,已知det(A)=2,det(B)=-7,求det(A+B)的值

A+B的行列式的值是不确定的还有别的条件吗A+B=x1+y12b1x2+y22b2=2*x1+y1b1x2+y2b2=2*x1b1x2b2+y1b1y2b2=2*(|A|+|B|)=2(2-7)=-1

设矩阵A=5 0 0 求矩阵A^-1 0 1 4 1 2 7,

A=500014127(A,E)=500100014010127001r3-2r250010001401010-10-21r1-5r3005110-501401010-10-21r1*(1/5)001

设N阶矩阵A,B满足条件A+B=AB 1证明A—E是可逆矩阵,并求其逆 2证明AB=BA

AB-B=A,(A-E)B-E=A-E,(A-E)(B-E)=E,所以A-E可逆逆矩阵为B-E由1知(A-E)和B-E互逆所以(B-E)(A-E)=E与(A-E)(B-E)=E,展开比较就可以得到AB

设矩阵A=〔2 0 1 -1 1 -3),B=(0 4 2 3 5 7)则AΤB

楼主严格按照矩阵乘法法则计算是很好算的,我可以把这个问题的本质告诉你:在满足乘法运算法则的前提下:行向量*列向量=两个向量的内积=一个数列向量*行向量=矩阵其实还有更一般的结论,设列向量A,B:1.A

线性代数的题:设λ=3为矩阵A的一个特征值,则λ=多少是矩阵B=A^3-5A^2+7A的一个特征值.

设x是对应的特征向量,所以Ax=3x所以Bx=27x-5*9x+7*3x=3x,所以特征值还是3

设矩阵A=(423 110 -123) 求矩阵B使其满足矩阵方程AB=A+2B.请注明计算过程.用打出来的,

AB=A+2B那么(A-2E)B=A所以B=A(A-2E)^(-1)而A-2E=2231-10-121用初等行变化求矩阵的逆矩阵的时候,即用行变换把矩阵(A,E)化成(E,B)的形式,那么B就等于A的

设n阶方阵A和B满足条件A+B=AB,证明A-E为可逆矩阵

证∵(A-E)(B-E)=E又:det(A-E)*det(B-E)=detE=1∴det(A-E)≠0∴A-E是可逆阵

设矩阵A和B满足关系 AB等于A加2B 而A等于|300,040,005|求矩阵B

矩阵B为[300][020][005/3]过程很麻烦,就是设出矩阵B为[x1x2x3][y1y2y3][z1z2z3]根据AB=A+2B联立方程得3x1=3+2x1;4y2=4+2y2;5z3=5+2

设矩阵A=221,110,-123,求矩阵B,使得A+2B=AB

我认为这么做由A+2B=ABA=2B-ABA=(2E-A)BA=221110-1232E-A=0-2-1-1101-2-1则2E-A的逆为-101-1111-2-2B=(2E-A)的逆*A=-302-

矩阵方程设矩阵A.B满足BA=A+2B,如何解这个方程?求B

由原式可知,A,B都为方阵.BA=A+2BBA-2B=AB(A-2E)=A当A-2E可逆时,(即A-2E的行列式不为零),B=(A-2E)^(-1)*A

设a,b属于Rn,A为正交矩阵,证明:1:|Aa|=|a|; 2:=.

=(Aa)^TAa=a^T(A^TA)a=a^Ta=故1成立.2,应该为=.根据1,考虑=分别展开,对比可得2.

高等代数题:设A和B都是非零矩阵,且AB=0.则

选C.这是因为:记A的列矩阵是A1,.An;B的行矩阵是B1,.Bn.由于AB=0所以(A1,...An)B=0因为B是非0矩阵,所以矩阵B至少有一列的元素不全为零,所以(A1,...An)乘以这一列

设n阶矩阵A与B相似,证明:存在满秩矩阵Q和另一矩阵R,使得A=QR,B=RQ

因矩阵A与B相似,则存在满秩矩阵Q,使A=Q^(-1)BQ→QA=BQ设QA=BQ=R→A=Q^(-1)R,B=RQ^(-1)把Q^(-1)看成Q即可

4 1 0 设矩阵A= 2 4 1 ,矩阵B满足AB-A=3B+E,求矩阵B (详解,3 0 5

是问的:410A=241305AB-A=3B+E么?再问:恩恩是的再答:AB-A=3B+E(A-3E)B=A+EB=((A-3E)^-1)(A+E)B=110251(211)^-1*(306)5103

设A和B都是8*3型矩阵,证明:|AA^T+BB^T|=0

证:(1)因为r(AA^T+BB^T)0所以A^TA是正定矩阵同理B^TB是正定矩阵所以A^TA+B^TB是正定的故有|A^TA+B^TB|>0.