设矩阵A=13*7和B=7*23,请根据straseen矩阵乘法计算矩阵的乘积.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 04:45:49
∵A2+AB+B2=0,∴A(A+B)=-B2,而B可逆,故:|-B2|=(-1)n|B|2≠0,∴|A(A+B)|=|-B2|≠0,∴A,A+B都可逆,证毕.
证明:因为A是对称矩阵所以A'=A.所以(B'AB)'=B'A'(B')'=B'AB所以B'AB是对称矩阵#
(1)A^2=3E+2BB=1/2(A^2-3E)=-3/29/2603/27/2-1/25/25/2(2)AB=3A+2B(A-2E)B=3AB=(A-2E)^-1*3A=-3612-4510221
参考一下再问:有没有更简单的方法?我们好像没学到过那条推论啊。。。QAQ再答:行列式拉普拉斯展开式有没有学过?
A+B的行列式的值是不确定的还有别的条件吗A+B=x1+y12b1x2+y22b2=2*x1+y1b1x2+y2b2=2*x1b1x2b2+y1b1y2b2=2*(|A|+|B|)=2(2-7)=-1
A=500014127(A,E)=500100014010127001r3-2r250010001401010-10-21r1-5r3005110-501401010-10-21r1*(1/5)001
AB-B=A,(A-E)B-E=A-E,(A-E)(B-E)=E,所以A-E可逆逆矩阵为B-E由1知(A-E)和B-E互逆所以(B-E)(A-E)=E与(A-E)(B-E)=E,展开比较就可以得到AB
楼主严格按照矩阵乘法法则计算是很好算的,我可以把这个问题的本质告诉你:在满足乘法运算法则的前提下:行向量*列向量=两个向量的内积=一个数列向量*行向量=矩阵其实还有更一般的结论,设列向量A,B:1.A
设x是对应的特征向量,所以Ax=3x所以Bx=27x-5*9x+7*3x=3x,所以特征值还是3
AB=A+2B那么(A-2E)B=A所以B=A(A-2E)^(-1)而A-2E=2231-10-121用初等行变化求矩阵的逆矩阵的时候,即用行变换把矩阵(A,E)化成(E,B)的形式,那么B就等于A的
证∵(A-E)(B-E)=E又:det(A-E)*det(B-E)=detE=1∴det(A-E)≠0∴A-E是可逆阵
矩阵B为[300][020][005/3]过程很麻烦,就是设出矩阵B为[x1x2x3][y1y2y3][z1z2z3]根据AB=A+2B联立方程得3x1=3+2x1;4y2=4+2y2;5z3=5+2
我认为这么做由A+2B=ABA=2B-ABA=(2E-A)BA=221110-1232E-A=0-2-1-1101-2-1则2E-A的逆为-101-1111-2-2B=(2E-A)的逆*A=-302-
由原式可知,A,B都为方阵.BA=A+2BBA-2B=AB(A-2E)=A当A-2E可逆时,(即A-2E的行列式不为零),B=(A-2E)^(-1)*A
=(Aa)^TAa=a^T(A^TA)a=a^Ta=故1成立.2,应该为=.根据1,考虑=分别展开,对比可得2.
选C.这是因为:记A的列矩阵是A1,.An;B的行矩阵是B1,.Bn.由于AB=0所以(A1,...An)B=0因为B是非0矩阵,所以矩阵B至少有一列的元素不全为零,所以(A1,...An)乘以这一列
因矩阵A与B相似,则存在满秩矩阵Q,使A=Q^(-1)BQ→QA=BQ设QA=BQ=R→A=Q^(-1)R,B=RQ^(-1)把Q^(-1)看成Q即可
是问的:410A=241305AB-A=3B+E么?再问:恩恩是的再答:AB-A=3B+E(A-3E)B=A+EB=((A-3E)^-1)(A+E)B=110251(211)^-1*(306)5103
证:(1)因为r(AA^T+BB^T)0所以A^TA是正定矩阵同理B^TB是正定矩阵所以A^TA+B^TB是正定的故有|A^TA+B^TB|>0.