设矩阵A与矩阵B等价,则下列说法正确的是. 的A秩等于B的秩 A的秩大于B的秩

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 19:36:42
设矩阵A与矩阵B等价,则下列说法正确的是. 的A秩等于B的秩 A的秩大于B的秩
矩阵A与B等价的充要条件是秩相等

对的.A等价于其等价标准形Er000A,B等价则它们的等价标准形相同故秩相等反之亦然

线性代数:如果矩阵A与B等价,B与A等价,是否能说明A=B?

不相等,相等是相当严苛的,很难达到.比如以下两个列向量,它们可以通过初等(行)变换相互转化,说明它们是等价的,但显然不相等(1)(0)(0)与(1)

矩阵A与矩阵B等价是A与B合同的什么条件

矩阵A与矩阵B等价是A与B合同的必要条件,但不是充分的.因为矩阵A与矩阵B等价是存在可逆矩阵P,Q.使得PAQ=B,而A与B合同是存在可逆矩阵C,使得C'AC=B,可见合同是特殊的等价.

设A为n阶正定矩阵,矩阵B与A相似,则B必为 A,实对称矩阵 B正定矩阵 C可逆矩阵

终于看明白了,稍等啊再问:则B必为()然后四个选项ABCD选哪个?不好意思括号没打再答:矩阵A是正定矩阵,则它一定是可逆矩阵,与可逆矩阵相似的矩阵一定也是可逆矩阵。故选C.与实对称矩阵相似的矩阵未必是

矩阵A与其特征矩阵等价吗?为什么?矩阵等价与相似是什么关系?

相似必等价,等价未必相似A与A-λE不等价,因为等价的充分必要条件是秩相同

矩阵A与B相似与矩阵A与B等价的区别

1、若存在可逆阵P、Q,使PAQ=B,则称矩阵A与矩阵B等价;\x0d2、若存在可逆阵P,使P^(-1)AP=B,则称矩阵A与矩阵B相似;\x0d3、若存在可逆阵P,使P'AP=B,则称矩阵A与矩阵B

设A、B为m×n矩阵,证明A与B等价的充要条件为R(A)=R(B).

证明:(必要性)设A与B等价,则B可以看成是A经过有限次初等变换得到的矩阵,而初等变换不改变矩阵的秩,所以R(A)=R(B).(充分性)设R(A)=R(B),则A、B的标准型都为ErOOO即A、B都与

矩阵A~B表示等价还是相似?

A~B一般表示相似A≌B一般表示等价你最好问问你的老师,把记号统一起来,避免出现歧义

设A是n阶对称矩阵,B是n阶反对称矩阵,则下列矩阵中反对称矩阵为:

选B由题目得:A'=A,B'=-B;因此选项A:(BAB)'=B'A'B'=BAB选项B:(ABA)'=A'B'A'=-ABA剩下的两个你自己分析一下吧,我得去吃饭了,别忘了(AB)'=B'A',顺序

矩阵A与矩阵B等价,A有一个r阶子式不等于0,则矩阵B的秩?

(1)是充分条件(2)a^3(3)至少有一个向量可由其余向量线性表示标题上还有一个(0)B的秩>=

设n阶矩阵A,B等价,|A|和|B|有什么关系?

(4)正确.A,B等价,即存在可逆P,Q满足PAQ=B所以|P||Q||A|=|B|所以|A|与|B|差一个非零倍数若一个等于0,另一个必为0

设A为正定矩阵,则下列矩阵不一定为正定矩阵的是

正定矩阵的特征值ai>0A^T,A+E,A^-1,A-2E的特征值分别为ai,ai+1,1/ai,ai-2所以只有A-2E的特征值可能为负值所以A-2E不一定正定

若矩阵A和B等价,则A的行向量组与B的行向量组等价

你问的都是判断题吧这个也不对矩阵等价的充分必要条件是秩相等A,B的行向量组等价的充分必要条件是存在可逆矩阵P使得PA=BA的行向量组与B的行向量组等价,则矩阵A和B等价.反之不成立.

线性代数:如果A矩阵与B矩阵等价,那么A矩阵与B矩阵的转置等价吗?

不一定吧,首先得是同形矩阵吧,转置之后一个是m*n,一个是n*m那就不等了,方阵的话还是等价的再问:方阵条件下,A,B等价,那A矩阵与B的转置矩阵是否等价呢再问:再问:请看看第三题吧再答:应该选D吧。

设矩阵A和B等价,A有一个k阶子式不等于零,则B的秩与k的情况是怎样?

∵,A有一个k阶子式不等于零.∴A的秩≥k∵矩阵A和B等价,∴A的秩=B的秩∴B的秩与k的关系是B的秩≥k

弱矩阵a与b的行向量组等价,则矩阵a与b也等价

对的.行向量组等价,则行秩相等,故矩阵的秩相等,故矩阵等价

设矩阵A与矩阵B等价,且r(A)=n,则r(B)=多少?

存在可逆矩阵P、Q,使PAQ=B,则A与B等价,充要条件是A与B是同型矩阵且R(A)=R(B)=n

您好 设A,B都是m×n矩阵,线性方程组AX=0与BX=0同解,则A与B的行向量组等价

Ax=0与Bx=0同解那么A,B的行简化梯矩阵相同,即存在可逆矩阵P,Q,使得PA=QB所以Q^-1PA=B所以A与B的行向量组等价.